A Novel Approach to Balance Convenience and Nutrition in Meals With Long-Term Group Recommendations and Reasoning on Multimodal Recipes and its Implementation in BEACON
- URL: http://arxiv.org/abs/2412.17910v1
- Date: Mon, 23 Dec 2024 19:05:27 GMT
- Title: A Novel Approach to Balance Convenience and Nutrition in Meals With Long-Term Group Recommendations and Reasoning on Multimodal Recipes and its Implementation in BEACON
- Authors: Vansh Nagpal, Siva Likitha Valluru, Kausik Lakkaraju, Nitin Gupta, Zach Abdulrahman, Andrew Davison, Biplav Srivastava,
- Abstract summary: We present a data-driven solution for meal recommendations that considers customizable meal configurations and time horizons.
Our contributions include introducing goodness measures, a recipe conversion method from text to the recently introduced multimodal rich recipe representation (R3) format, and the prototype, usage-inspired, BEACON system.
- Score: 8.955242763610366
- License:
- Abstract: "A common decision made by people, whether healthy or with health conditions, is choosing meals like breakfast, lunch, and dinner, comprising combinations of foods for appetizer, main course, side dishes, desserts, and beverages. Often, this decision involves tradeoffs between nutritious choices (e.g., salt and sugar levels, nutrition content) and convenience (e.g., cost and accessibility, cuisine type, food source type). We present a data-driven solution for meal recommendations that considers customizable meal configurations and time horizons. This solution balances user preferences while accounting for food constituents and cooking processes. Our contributions include introducing goodness measures, a recipe conversion method from text to the recently introduced multimodal rich recipe representation (R3) format, learning methods using contextual bandits that show promising preliminary results, and the prototype, usage-inspired, BEACON system."
Related papers
- MOPI-HFRS: A Multi-objective Personalized Health-aware Food Recommendation System with LLM-enhanced Interpretation [50.309987904297415]
Major food recommendation platforms such as Yelp prioritize users' dietary preferences over the healthiness of their choices.
We develop a novel framework, Multi-Objective Personalized Interpretable Health-aware Food Recommendation System (MOPI-HFRS)
It provides food recommendations by jointly optimizing the three objectives: user preference, personalized healthiness and nutritional diversity, along with a large language model (LLM)-enhanced reasoning module.
arXiv Detail & Related papers (2024-12-12T01:02:09Z) - Retrieval Augmented Recipe Generation [96.43285670458803]
We propose a retrieval augmented large multimodal model for recipe generation.
It retrieves recipes semantically related to the image from an existing datastore as a supplement.
It calculates the consistency among generated recipe candidates, which use different retrieval recipes as context for generation.
arXiv Detail & Related papers (2024-11-13T15:58:50Z) - RoDE: Linear Rectified Mixture of Diverse Experts for Food Large Multi-Modal Models [96.43285670458803]
Uni-Food is a unified food dataset that comprises over 100,000 images with various food labels.
Uni-Food is designed to provide a more holistic approach to food data analysis.
We introduce a novel Linear Rectification Mixture of Diverse Experts (RoDE) approach to address the inherent challenges of food-related multitasking.
arXiv Detail & Related papers (2024-07-17T16:49:34Z) - Food Pairing Unveiled: Exploring Recipe Creation Dynamics through Recommender Systems [0.0]
In Western cuisine, ingredients in recipes often share more flavor compounds than expected by chance.
Our work applies state-of-the-art collaborative filtering techniques to the dataset.
We create our recommender in two ways, by taking into account ingredients appearances in recipes or shared flavor compounds between foods.
arXiv Detail & Related papers (2024-06-21T13:45:42Z) - BEACON: Balancing Convenience and Nutrition in Meals With Long-Term Group Recommendations and Reasoning on Multimodal Recipes [4.441718631975636]
We present a data-driven approach for the novel meal recommendation problem.
Our contributions include a goodness measure, a recipe conversion method from text, and learning methods using contextual bandits.
arXiv Detail & Related papers (2024-06-19T17:14:41Z) - How Much You Ate? Food Portion Estimation on Spoons [63.611551981684244]
Current image-based food portion estimation algorithms assume that users take images of their meals one or two times.
We introduce an innovative solution that utilizes stationary user-facing cameras to track food items on utensils.
The system is reliable for estimation of nutritional content of liquid-solid heterogeneous mixtures such as soups and stews.
arXiv Detail & Related papers (2024-05-12T00:16:02Z) - MenuAI: Restaurant Food Recommendation System via a Transformer-based
Deep Learning Model [15.248362664235845]
A novel restaurant food recommendation system is proposed in this paper.
It uses Optical Character Recognition (OCR) technology and a transformer-based deep learning model, Learning to Rank (LTR) model.
Our system is able to rank the food dishes in terms of the input search key (e.g., calorie, protein level)
arXiv Detail & Related papers (2022-10-15T11:45:44Z) - Towards the Creation of a Nutrition and Food Group Based Image Database [58.429385707376554]
We propose a framework to create a nutrition and food group based image database.
We design a protocol for linking food group based food codes in the U.S. Department of Agriculture's (USDA) Food and Nutrient Database for Dietary Studies (FNDDS)
Our proposed method is used to build a nutrition and food group based image database including 16,114 food datasets.
arXiv Detail & Related papers (2022-06-05T02:41:44Z) - Learning Personal Food Preferences via Food Logs Embedding [1.1534313664323634]
We propose a method for learning food preferences from food logs.
Our proposed approach identifies 82% of a user's ten most frequently eaten foods.
arXiv Detail & Related papers (2021-10-29T02:36:24Z) - Personalized Food Recommendation as Constrained Question Answering over
a Large-scale Food Knowledge Graph [16.58534326000209]
We propose a novel problem formulation for food recommendation, modeling this task as constrained question answering over a large-scale food knowledge base/graph (KBQA)
Besides the requirements from the user query, personalized requirements from the user's dietary preferences and health guidelines are handled in a unified way.
Our approach significantly outperforms non-personalized counterparts.
arXiv Detail & Related papers (2021-01-05T20:38:16Z) - Cross-Modal Food Retrieval: Learning a Joint Embedding of Food Images
and Recipes with Semantic Consistency and Attention Mechanism [70.85894675131624]
We learn an embedding of images and recipes in a common feature space, such that the corresponding image-recipe embeddings lie close to one another.
We propose Semantic-Consistent and Attention-based Networks (SCAN), which regularize the embeddings of the two modalities through aligning output semantic probabilities.
We show that we can outperform several state-of-the-art cross-modal retrieval strategies for food images and cooking recipes by a significant margin.
arXiv Detail & Related papers (2020-03-09T07:41:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.