Molly: Making Large Language Model Agents Solve Python Problem More Logically
- URL: http://arxiv.org/abs/2412.18093v1
- Date: Tue, 24 Dec 2024 02:08:38 GMT
- Title: Molly: Making Large Language Model Agents Solve Python Problem More Logically
- Authors: Rui Xiao, Jiong Wang, Lu Han, Na Zong, Han Wu,
- Abstract summary: Molly agent parses the learners' questioning intent through a scenario-based interaction.
At generation stage, the agent reflect on the generated responses to ensure that they not only align with factual content but also effectively answer the user's queries.
- Score: 11.317420065020173
- License:
- Abstract: Applying large language models (LLMs) as teaching assists has attracted much attention as an integral part of intelligent education, particularly in computing courses. To reduce the gap between the LLMs and the computer programming education expert, fine-tuning and retrieval augmented generation (RAG) are the two mainstream methods in existing researches. However, fine-tuning for specific tasks is resource-intensive and may diminish the model`s generalization capabilities. RAG can perform well on reducing the illusion of LLMs, but the generation of irrelevant factual content during reasoning can cause significant confusion for learners. To address these problems, we introduce the Molly agent, focusing on solving the proposed problem encountered by learners when learning Python programming language. Our agent automatically parse the learners' questioning intent through a scenario-based interaction, enabling precise retrieval of relevant documents from the constructed knowledge base. At generation stage, the agent reflect on the generated responses to ensure that they not only align with factual content but also effectively answer the user's queries. Extensive experimentation on a constructed Chinese Python QA dataset shows the effectiveness of the Molly agent, indicating an enhancement in its performance for providing useful responses to Python questions.
Related papers
- Learning Task Representations from In-Context Learning [73.72066284711462]
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning.
We introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads.
We show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
arXiv Detail & Related papers (2025-02-08T00:16:44Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.
This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.
Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - GraphTeam: Facilitating Large Language Model-based Graph Analysis via Multi-Agent Collaboration [46.663380413396226]
GraphTeam consists of five LLM-based agents from three modules, and the agents with different specialities can collaborate to address complex problems.
Experiments on six graph analysis benchmarks demonstrate that GraphTeam achieves state-of-the-art performance with an average 25.85% improvement over the best baseline in terms of accuracy.
arXiv Detail & Related papers (2024-10-23T17:02:59Z) - Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
Large language models (LLMs) have rapidly improved text embeddings for a growing array of natural-language processing tasks.
We introduce question-answering embeddings (QA-Emb), embeddings where each feature represents an answer to a yes/no question asked to an LLM.
We use QA-Emb to flexibly generate interpretable models for predicting fMRI voxel responses to language stimuli.
arXiv Detail & Related papers (2024-05-26T22:30:29Z) - Redefining Information Retrieval of Structured Database via Large Language Models [10.117751707641416]
This paper introduces a novel retrieval augmentation framework called ChatLR.
It primarily employs the powerful semantic understanding ability of Large Language Models (LLMs) as retrievers to achieve precise and concise information retrieval.
Experimental results demonstrate the effectiveness of ChatLR in addressing user queries, achieving an overall information retrieval accuracy exceeding 98.8%.
arXiv Detail & Related papers (2024-05-09T02:37:53Z) - Look Before You Leap: A Universal Emergent Decomposition of Retrieval
Tasks in Language Models [58.57279229066477]
We study how language models (LMs) solve retrieval tasks in diverse situations.
We introduce ORION, a collection of structured retrieval tasks spanning six domains.
We find that LMs internally decompose retrieval tasks in a modular way.
arXiv Detail & Related papers (2023-12-13T18:36:43Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - problexity -- an open-source Python library for binary classification
problem complexity assessment [0.0]
The classification problem's complexity assessment is an essential element of many topics in the supervised learning domain.
The tools currently available for the academic community, which would enable the calculation of problem complexity measures, are available only as libraries of the C++ and R languages.
This paper describes the software module that allows for the estimation of 22 complexity measures for the Python language.
arXiv Detail & Related papers (2022-07-14T07:32:15Z) - Automatic Short Math Answer Grading via In-context Meta-learning [2.0263791972068628]
We study the problem of automatic short answer grading for students' responses to math questions.
We use MathBERT, a variant of the popular language model BERT adapted to mathematical content, as our base model.
Second, we use an in-context learning approach that provides scoring examples as input to the language model.
arXiv Detail & Related papers (2022-05-30T16:26:02Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
We study the effectiveness of Feature Density (FD) using different linguistically-backed feature preprocessing methods.
We hypothesise that estimating dataset complexity allows for the reduction of the number of required experiments.
The difference in linguistic complexity of datasets allows us to additionally discuss the efficacy of linguistically-backed word preprocessing.
arXiv Detail & Related papers (2021-11-02T15:48:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.