Efficient Long Context Language Model Retrieval with Compression
- URL: http://arxiv.org/abs/2412.18232v1
- Date: Tue, 24 Dec 2024 07:30:55 GMT
- Title: Efficient Long Context Language Model Retrieval with Compression
- Authors: Minju Seo, Jinheon Baek, Seongyun Lee, Sung Ju Hwang,
- Abstract summary: Long Context Language Models (LCLMs) have emerged as a new paradigm to perform Information Retrieval (IR)
We propose a new compression approach tailored for LCLM retrieval, which is trained to maximize the retrieval performance while minimizing the length of the compressed passages.
We show that CoLoR improves the retrieval performance by 6% while compressing the in-context size by a factor of 1.91.
- Score: 57.09163579304332
- License:
- Abstract: Long Context Language Models (LCLMs) have emerged as a new paradigm to perform Information Retrieval (IR), which enables the direct ingestion and retrieval of information by processing an entire corpus in their single context, showcasing the potential to surpass traditional sparse and dense retrieval methods. However, processing a large number of passages within in-context for retrieval is computationally expensive, and handling their representations during inference further exacerbates the processing time; thus, we aim to make LCLM retrieval more efficient and potentially more effective with passage compression. Specifically, we propose a new compression approach tailored for LCLM retrieval, which is trained to maximize the retrieval performance while minimizing the length of the compressed passages. To accomplish this, we generate the synthetic data, where compressed passages are automatically created and labeled as chosen or rejected according to their retrieval success for a given query, and we train the proposed Compression model for Long context Retrieval (CoLoR) with this data via preference optimization while adding the length regularization loss on top of it to enforce brevity. Through extensive experiments on 9 datasets, we show that CoLoR improves the retrieval performance by 6% while compressing the in-context size by a factor of 1.91.
Related papers
- Does RAG Really Perform Bad For Long-Context Processing? [15.889864680212147]
RetroLM is a novel framework for long-context processing.
Unlike traditional methods, RetroLM employs KV-level retrieval augmentation.
Building on this framework, we develop a specialized retriever for precise retrieval of critical pages.
arXiv Detail & Related papers (2025-02-17T05:02:25Z) - LCIRC: A Recurrent Compression Approach for Efficient Long-form Context and Query Dependent Modeling in LLMs [10.84210988032097]
We introduce Long-form Context Injection with Recurrent Compression (LCIRC), a method that enables the efficient processing long-form sequences beyond the model's length limit.
We also introduce query dependent context modeling, which selectively compresses query-relevant information, ensuring that the model retains the most pertinent content.
arXiv Detail & Related papers (2025-02-10T04:02:18Z) - UIO-LLMs: Unbiased Incremental Optimization for Long-Context LLMs [111.12010207132204]
UIO-LLMs is an incremental optimization approach for memory-enhanced transformers under long-context settings.
We refine the training process using the Truncated Backpropagation Through Time (TBPTT) algorithm.
UIO-LLMs successfully handle long context, such as extending the context window of Llama2-7b-chat from 4K to 100K tokens with minimal 2% additional parameters.
arXiv Detail & Related papers (2024-06-26T08:44:36Z) - Learning to Retrieve Iteratively for In-Context Learning [56.40100968649039]
iterative retrieval is a novel framework that empowers retrievers to make iterative decisions through policy optimization.
We instantiate an iterative retriever for composing in-context learning exemplars and apply it to various semantic parsing tasks.
By adding only 4M additional parameters for state encoding, we convert an off-the-shelf dense retriever into a stateful iterative retriever.
arXiv Detail & Related papers (2024-06-20T21:07:55Z) - In-Context Former: Lightning-fast Compressing Context for Large Language Model [48.831304302467004]
In this paper, we propose a new approach to compress the long input contexts of Transformer-based large language models (LLMs)
We use the cross-attention mechanism and a small number of learnable digest tokens to condense information from the contextual word embeddings.
Experimental results indicate that our method requires only 1/32 of the floating-point operations of the baseline during compression and improves processing speed by 68 to 112 times.
arXiv Detail & Related papers (2024-06-19T15:14:55Z) - Recurrent Context Compression: Efficiently Expanding the Context Window of LLM [22.595457889113668]
This work introduces a method called Recurrent Context Compression (RCC), designed to efficiently expand the context window length of Transformer-based large language models (LLMs)
We validated our approach on multiple tasks, achieving a compression rate of up to 32x on text reconstruction tasks with a BLEU4 score close to 0.95, and nearly 100% accuracy on a passkey retrieval task with a sequence length of 1M.
arXiv Detail & Related papers (2024-06-10T08:50:59Z) - Extending Context Window of Large Language Models via Semantic
Compression [21.35020344956721]
Large Language Models (LLMs) often impose limitations on the length of the text input to ensure the generation of fluent and relevant responses.
We propose a novel semantic compression method that enables generalization to texts 6-8 times longer, without incurring significant computational costs or requiring fine-tuning.
arXiv Detail & Related papers (2023-12-15T07:04:33Z) - RECOMP: Improving Retrieval-Augmented LMs with Compression and Selective
Augmentation [61.53695868960846]
We propose compressing retrieved documents into textual summaries prior to in-context integration.
This not only reduces the computational costs but also relieves the burden of LMs to identify relevant information in long retrieved documents.
We show that our compressors trained for one LM can transfer to other LMs on the language modeling task and provide summaries largely faithful to the retrieved documents.
arXiv Detail & Related papers (2023-10-06T17:55:36Z) - LaPraDoR: Unsupervised Pretrained Dense Retriever for Zero-Shot Text
Retrieval [55.097573036580066]
Experimental results show that LaPraDoR achieves state-of-the-art performance compared with supervised dense retrieval models.
Compared to re-ranking, our lexicon-enhanced approach can be run in milliseconds (22.5x faster) while achieving superior performance.
arXiv Detail & Related papers (2022-03-11T18:53:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.