NoiseHGNN: Synthesized Similarity Graph-Based Neural Network For Noised Heterogeneous Graph Representation Learning
- URL: http://arxiv.org/abs/2412.18267v1
- Date: Tue, 24 Dec 2024 08:27:33 GMT
- Title: NoiseHGNN: Synthesized Similarity Graph-Based Neural Network For Noised Heterogeneous Graph Representation Learning
- Authors: Xiong Zhang, Cheng Xie, Haoran Duan, Beibei Yu,
- Abstract summary: This paper proposes a novel synthesized similarity-based graph neural network compatible with noised heterogeneous graph learning.
Experiments in numerous real-world datasets show the proposed method achieves state-of-the-art records in the noised heterogeneous graph learning tasks.
- Score: 4.902764870284444
- License:
- Abstract: Real-world graph data environments intrinsically exist noise (e.g., link and structure errors) that inevitably disturb the effectiveness of graph representation and downstream learning tasks. For homogeneous graphs, the latest works use original node features to synthesize a similarity graph that can correct the structure of the noised graph. This idea is based on the homogeneity assumption, which states that similar nodes in the homogeneous graph tend to have direct links in the original graph. However, similar nodes in heterogeneous graphs usually do not have direct links, which can not be used to correct the original noise graph. This causes a significant challenge in noised heterogeneous graph learning. To this end, this paper proposes a novel synthesized similarity-based graph neural network compatible with noised heterogeneous graph learning. First, we calculate the original feature similarities of all nodes to synthesize a similarity-based high-order graph. Second, we propose a similarity-aware encoder to embed original and synthesized graphs with shared parameters. Then, instead of graph-to-graph supervising, we synchronously supervise the original and synthesized graph embeddings to predict the same labels. Meanwhile, a target-based graph extracted from the synthesized graph contrasts the structure of the metapath-based graph extracted from the original graph to learn the mutual information. Extensive experiments in numerous real-world datasets show the proposed method achieves state-of-the-art records in the noised heterogeneous graph learning tasks. In highlights, +5$\sim$6\% improvements are observed in several noised datasets compared with previous SOTA methods. The code and datasets are available at https://github.com/kg-cc/NoiseHGNN.
Related papers
- Robust Graph Structure Learning under Heterophily [12.557639223778722]
We propose a novel robust graph structure learning method to achieve a high-quality graph from heterophilic data for downstream tasks.
We first apply a high-pass filter to make each node more distinctive from its neighbors by encoding structure information into the node features.
Then, we learn a robust graph with an adaptive norm characterizing different levels of noise.
arXiv Detail & Related papers (2024-03-06T12:29:13Z) - Homophily-Related: Adaptive Hybrid Graph Filter for Multi-View Graph
Clustering [29.17784041837907]
We propose Adaptive Hybrid Graph Filter for Multi-View Graph Clustering (AHGFC)
AHGFC learns the node embedding based on the graph joint aggregation matrix.
Experimental results show that our proposed model performs well on six datasets containing homophilous and heterophilous graphs.
arXiv Detail & Related papers (2024-01-05T07:27:29Z) - Graph Mixup with Soft Alignments [49.61520432554505]
We study graph data augmentation by mixup, which has been used successfully on images.
We propose S-Mixup, a simple yet effective mixup method for graph classification by soft alignments.
arXiv Detail & Related papers (2023-06-11T22:04:28Z) - Beyond Homophily: Reconstructing Structure for Graph-agnostic Clustering [15.764819403555512]
It is impossible to first identify a graph as homophilic or heterophilic before a suitable GNN model can be found.
We propose a novel graph clustering method, which contains three key components: graph reconstruction, a mixed filter, and dual graph clustering network.
Our method dominates others on heterophilic graphs.
arXiv Detail & Related papers (2023-05-03T01:49:01Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
We propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning.
We employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning.
We transform node representations into graph-level representations via pooling operations for graph similarity computation.
arXiv Detail & Related papers (2022-05-30T13:20:26Z) - G-Mixup: Graph Data Augmentation for Graph Classification [55.63157775049443]
Mixup has shown superiority in improving the generalization and robustness of neural networks by interpolating features and labels between two random samples.
We propose $mathcalG$-Mixup to augment graphs for graph classification by interpolating the generator (i.e., graphon) of different classes of graphs.
Experiments show that $mathcalG$-Mixup substantially improves the generalization and robustness of GNNs.
arXiv Detail & Related papers (2022-02-15T04:09:44Z) - Intrusion-Free Graph Mixup [33.07540841212878]
We present a simple and yet effective regularization technique to improve the generalization of Graph Neural Networks (GNNs)
We leverage the recent advances in Mixup regularizer for vision and text, where random sample pairs and their labels are interpolated to create synthetic samples for training.
Our method can effectively regularize the graph classification learning, resulting in superior predictive accuracy over popular graph augmentation baselines.
arXiv Detail & Related papers (2021-10-18T14:16:00Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.