GDM4MMIMO: Generative Diffusion Models for Massive MIMO Communications
- URL: http://arxiv.org/abs/2412.18281v1
- Date: Tue, 24 Dec 2024 08:42:01 GMT
- Title: GDM4MMIMO: Generative Diffusion Models for Massive MIMO Communications
- Authors: Zhenzhou Jin, Li You, Huibin Zhou, Yuanshuo Wang, Xiaofeng Liu, Xinrui Gong, Xiqi Gao, Derrick Wing Kwan Ng, Xiang-Gen Xia,
- Abstract summary: generative diffusion model (GDM) is one of state-of-the-art families of generative models.
GDM demonstrates exceptional capability to learn implicit prior knowledge and robust generalization capabilities.
Case study shows GDM's promising potential for facilitating efficient ultra-dimensional channel statement information acquisition.
- Score: 61.56610953012228
- License:
- Abstract: Massive multiple-input multiple-output (MIMO) offers significant advantages in spectral and energy efficiencies, positioning it as a cornerstone technology of fifth-generation (5G) wireless communication systems and a promising solution for the burgeoning data demands anticipated in sixth-generation (6G) networks. In recent years, with the continuous advancement of artificial intelligence (AI), a multitude of task-oriented generative foundation models (GFMs) have emerged, achieving remarkable performance in various fields such as computer vision (CV), natural language processing (NLP), and autonomous driving. As a pioneering force, these models are driving the paradigm shift in AI towards generative AI (GenAI). Among them, the generative diffusion model (GDM), as one of state-of-the-art families of generative models, demonstrates an exceptional capability to learn implicit prior knowledge and robust generalization capabilities, thereby enhancing its versatility and effectiveness across diverse applications. In this paper, we delve into the potential applications of GDM in massive MIMO communications. Specifically, we first provide an overview of massive MIMO communication, the framework of GFMs, and the working mechanism of GDM. Following this, we discuss recent research advancements in the field and present a case study of near-field channel estimation based on GDM, demonstrating its promising potential for facilitating efficient ultra-dimensional channel statement information (CSI) acquisition in the context of massive MIMO communications. Finally, we highlight several pressing challenges in future mobile communications and identify promising research directions surrounding GDM.
Related papers
- MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - At the Dawn of Generative AI Era: A Tutorial-cum-Survey on New Frontiers
in 6G Wireless Intelligence [11.847999494242387]
Generative AI (GenAI) pertains to generative models (GMs) capable of discerning the underlying data distribution, patterns, and features of the input data.
This makes GenAI a crucial asset in wireless domain wherein real-world data is often scarce, incomplete, costly to acquire, and hard to model or comprehend.
We outline the central role of GMs in pioneering areas of 6G network research, including semantic/THz/near-field communications, ISAC, extremely large antenna arrays, digital twins, AI-generated content services, mobile edge computing and edge AI, adversarial ML, and trustworthy
arXiv Detail & Related papers (2024-02-02T06:23:25Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
Vision foundation models (VFMs) serve as potent building blocks for a wide range of AI applications.
The scarcity of comprehensive training data, the need for multi-sensor integration, and the diverse task-specific architectures pose significant obstacles to the development of VFMs.
This paper delves into the critical challenge of forging VFMs tailored specifically for autonomous driving, while also outlining future directions.
arXiv Detail & Related papers (2024-01-16T01:57:24Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
Generative Artificial Intelligence (GAI) possesses the capabilities of generating realistic data and facilitating advanced decision-making.
By integrating GAI into modern Internet of Things (IoT), Generative Internet of Things (GIoT) is emerging and holds immense potential to revolutionize various aspects of society.
arXiv Detail & Related papers (2023-10-27T02:58:11Z) - Deep Generative Model and Its Applications in Efficient Wireless Network
Management: A Tutorial and Case Study [71.8330148641267]
Deep generation models (DGMs) have been experiencing explosive growth from 2022.
In this article, we explore the applications of DGMs in improving the efficiency of wireless network management.
arXiv Detail & Related papers (2023-03-30T02:59:51Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
Future communication networks must address the scarce spectrum to accommodate growth of heterogeneous wireless devices.
We exploit the potential of deep neural networks based multi-task learning framework to simultaneously learn modulation and signal classification tasks.
We provide a comprehensive heterogeneous wireless signals dataset for public use.
arXiv Detail & Related papers (2022-02-26T14:51:02Z) - Single and Multi-Agent Deep Reinforcement Learning for AI-Enabled
Wireless Networks: A Tutorial [29.76086936463468]
This tutorial focuses on the role of Deep Reinforcement Learning (DRL) with an emphasis on deep Multi-Agent Reinforcement Learning (MARL) for AI-enabled 6G networks.
The first part of this paper will present a clear overview of the mathematical frameworks for single-agent RL and MARL.
We provide a selective description of RL algorithms such as Model-Based RL (MBRL) and cooperative MARL.
arXiv Detail & Related papers (2020-11-06T22:12:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.