Towards understanding how attention mechanism works in deep learning
- URL: http://arxiv.org/abs/2412.18288v1
- Date: Tue, 24 Dec 2024 08:52:06 GMT
- Title: Towards understanding how attention mechanism works in deep learning
- Authors: Tianyu Ruan, Shihua Zhang,
- Abstract summary: We study the process of computing similarity using classic metrics and vector space properties in manifold learning, clustering, and supervised learning.
We decompose the self-attention mechanism into a learnable pseudo-metric function and an information propagation process based on similarity computation.
We propose a modified attention mechanism called metric-attention by leveraging the concept of metric learning to facilitate the ability to learn desired metrics more effectively.
- Score: 8.79364699260219
- License:
- Abstract: Attention mechanism has been extensively integrated within mainstream neural network architectures, such as Transformers and graph attention networks. Yet, its underlying working principles remain somewhat elusive. What is its essence? Are there any connections between it and traditional machine learning algorithms? In this study, we inspect the process of computing similarity using classic metrics and vector space properties in manifold learning, clustering, and supervised learning. We identify the key characteristics of similarity computation and information propagation in these methods and demonstrate that the self-attention mechanism in deep learning adheres to the same principles but operates more flexibly and adaptively. We decompose the self-attention mechanism into a learnable pseudo-metric function and an information propagation process based on similarity computation. We prove that the self-attention mechanism converges to a drift-diffusion process through continuous modeling provided the pseudo-metric is a transformation of a metric and certain reasonable assumptions hold. This equation could be transformed into a heat equation under a new metric. In addition, we give a first-order analysis of attention mechanism with a general pseudo-metric function. This study aids in understanding the effects and principle of attention mechanism through physical intuition. Finally, we propose a modified attention mechanism called metric-attention by leveraging the concept of metric learning to facilitate the ability to learn desired metrics more effectively. Experimental results demonstrate that it outperforms self-attention regarding training efficiency, accuracy, and robustness.
Related papers
- Understanding Machine Learning Paradigms through the Lens of Statistical Thermodynamics: A tutorial [0.0]
The tutorial delves into advanced techniques like entropy, free energy, and variational inference which are utilized in machine learning.
We show how an in-depth comprehension of physical systems' behavior can yield more effective and dependable machine learning models.
arXiv Detail & Related papers (2024-11-24T18:20:05Z) - Binding Dynamics in Rotating Features [72.80071820194273]
We propose an alternative "cosine binding" mechanism, which explicitly computes the alignment between features and adjusts weights accordingly.
This allows us to draw direct connections to self-attention and biological neural processes, and to shed light on the fundamental dynamics for object-centric representations to emerge in Rotating Features.
arXiv Detail & Related papers (2024-02-08T12:31:08Z) - Nature-Inspired Local Propagation [68.63385571967267]
Natural learning processes rely on mechanisms where data representation and learning are intertwined in such a way as to respect locality.
We show that the algorithmic interpretation of the derived "laws of learning", which takes the structure of Hamiltonian equations, reduces to Backpropagation when the speed of propagation goes to infinity.
This opens the doors to machine learning based on full on-line information that are based the replacement of Backpropagation with the proposed local algorithm.
arXiv Detail & Related papers (2024-02-04T21:43:37Z) - A cyclical route linking fundamental mechanism and AI algorithm: An example from tuning Poisson's ratio in amorphous networks [2.2450275029638282]
"AI for science" is a future trend in the development of scientific research.
This article uses the investigation into the relationship between extreme Poisson's ratio values and the structure of amorphous networks as a case study.
We employ a convolutional neural network, trained on the dynamical matrix instead of traditional image recognition, to predict the Poisson's ratio of amorphous networks with a much higher efficiency.
arXiv Detail & Related papers (2023-12-06T10:40:33Z) - Emergent learning in physical systems as feedback-based aging in a
glassy landscape [0.0]
We show that the learning dynamics resembles an aging process, where the system relaxes in response to repeated application of the feedback boundary forces.
We also observe that the square root of the mean-squared error as a function of epoch takes on a non-exponential form, which is a typical feature of glassy systems.
arXiv Detail & Related papers (2023-09-08T15:24:55Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline
Reinforcement Learning [114.36124979578896]
We design a dynamic mechanism using offline reinforcement learning algorithms.
Our algorithm is based on the pessimism principle and only requires a mild assumption on the coverage of the offline data set.
arXiv Detail & Related papers (2022-05-05T05:44:26Z) - Attention that does not Explain Away [54.42960937271612]
Models based on the Transformer architecture have achieved better accuracy than the ones based on competing architectures for a large set of tasks.
A unique feature of the Transformer is its universal application of a self-attention mechanism, which allows for free information flow at arbitrary distances.
We propose a doubly-normalized attention scheme that is simple to implement and provides theoretical guarantees for avoiding the "explaining away" effect.
arXiv Detail & Related papers (2020-09-29T21:05:39Z) - Untangling tradeoffs between recurrence and self-attention in neural
networks [81.30894993852813]
We present a formal analysis of how self-attention affects gradient propagation in recurrent networks.
We prove that it mitigates the problem of vanishing gradients when trying to capture long-term dependencies.
We propose a relevancy screening mechanism that allows for a scalable use of sparse self-attention with recurrence.
arXiv Detail & Related papers (2020-06-16T19:24:25Z) - Is Attention All What You Need? -- An Empirical Investigation on
Convolution-Based Active Memory and Self-Attention [7.967230034960396]
We evaluate whether various active-memory mechanisms could replace self-attention in a Transformer.
Experiments suggest that active-memory alone achieves comparable results to the self-attention mechanism for language modelling.
For some specific algorithmic tasks, active-memory mechanisms alone outperform both self-attention and a combination of the two.
arXiv Detail & Related papers (2019-12-27T02:01:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.