DeepCRCEval: Revisiting the Evaluation of Code Review Comment Generation
- URL: http://arxiv.org/abs/2412.18291v2
- Date: Sat, 25 Jan 2025 08:48:32 GMT
- Title: DeepCRCEval: Revisiting the Evaluation of Code Review Comment Generation
- Authors: Junyi Lu, Xiaojia Li, Zihan Hua, Lei Yu, Shiqi Cheng, Li Yang, Fengjun Zhang, Chun Zuo,
- Abstract summary: This study empirically analyzes benchmark comments using a novel set of criteria informed by prior research and developer interviews.
Our evaluation framework, DeepCRCEval, integrates human evaluators and Large Language Models (LLMs) for a comprehensive reassessment of current techniques.
- Score: 11.010557279355885
- License:
- Abstract: Code review is a vital but demanding aspect of software development, generating significant interest in automating review comments. Traditional evaluation methods for these comments, primarily based on text similarity, face two major challenges: inconsistent reliability of human-authored comments in open-source projects and the weak correlation of text similarity with objectives like enhancing code quality and detecting defects. This study empirically analyzes benchmark comments using a novel set of criteria informed by prior research and developer interviews. We then similarly revisit the evaluation of existing methodologies. Our evaluation framework, DeepCRCEval, integrates human evaluators and Large Language Models (LLMs) for a comprehensive reassessment of current techniques based on the criteria set. Besides, we also introduce an innovative and efficient baseline, LLM-Reviewer, leveraging the few-shot learning capabilities of LLMs for a target-oriented comparison. Our research highlights the limitations of text similarity metrics, finding that less than 10% of benchmark comments are high quality for automation. In contrast, DeepCRCEval effectively distinguishes between high and low-quality comments, proving to be a more reliable evaluation mechanism. Incorporating LLM evaluators into DeepCRCEval significantly boosts efficiency, reducing time and cost by 88.78% and 90.32%, respectively. Furthermore, LLM-Reviewer demonstrates significant potential of focusing task real targets in comment generation.
Related papers
- ReviewEval: An Evaluation Framework for AI-Generated Reviews [9.35023998408983]
This research introduces a comprehensive evaluation framework for AI-generated reviews.
It measures alignment with human evaluations, verifies factual accuracy, assesses analytical depth, and identifies actionable insights.
Our framework establishes standardized metrics for evaluating AI-based review systems.
arXiv Detail & Related papers (2025-02-17T12:22:11Z) - RealCritic: Towards Effectiveness-Driven Evaluation of Language Model Critiques [59.861013614500024]
We introduce a new benchmark designed to assess the critique capabilities of Large Language Models (LLMs)
Unlike existing benchmarks, which typically function in an open-loop fashion, our approach employs a closed-loop methodology that evaluates the quality of corrections generated from critiques.
arXiv Detail & Related papers (2025-01-24T13:48:10Z) - Enabling Scalable Oversight via Self-Evolving Critic [59.861013614500024]
SCRIT (Self-evolving CRITic) is a framework that enables genuine self-evolution of critique abilities.
It self-improves by training on synthetic data, generated by a contrastive-based self-critic.
It achieves up to a 10.3% improvement on critique-correction and error identification benchmarks.
arXiv Detail & Related papers (2025-01-10T05:51:52Z) - Towards Understanding the Robustness of LLM-based Evaluations under Perturbations [9.944512689015998]
Large Language Models (LLMs) can serve as automatic evaluators for non-standardized metrics in summarization and dialog-based tasks.
We conduct experiments across multiple prompting strategies to examine how LLMs fare as quality evaluators when compared with human judgments.
arXiv Detail & Related papers (2024-12-12T13:31:58Z) - Optimizing the role of human evaluation in LLM-based spoken document summarization systems [0.0]
We propose an evaluation paradigm for spoken document summarization explicitly tailored for generative AI content.
We provide detailed evaluation criteria and best practices guidelines to ensure robustness in the experimental design, replicability, and trustworthiness of human evaluations.
arXiv Detail & Related papers (2024-10-23T18:37:14Z) - RevisEval: Improving LLM-as-a-Judge via Response-Adapted References [95.29800580588592]
RevisEval is a novel text generation evaluation paradigm via the response-adapted references.
RevisEval is driven by the key observation that an ideal reference should maintain the necessary relevance to the response to be evaluated.
arXiv Detail & Related papers (2024-10-07T16:50:47Z) - MATEval: A Multi-Agent Discussion Framework for Advancing Open-Ended Text Evaluation [22.19073789961769]
generative Large Language Models (LLMs) have been remarkable, however, the quality of the text generated by these models often reveals persistent issues.
We propose the MATEval: A "Multi-Agent Text Evaluation framework"
Our framework incorporates self-reflection and Chain-of-Thought strategies, along with feedback mechanisms, to enhance the depth and breadth of the evaluation process.
arXiv Detail & Related papers (2024-03-28T10:41:47Z) - HD-Eval: Aligning Large Language Model Evaluators Through Hierarchical
Criteria Decomposition [92.17397504834825]
HD-Eval is a framework that iteratively aligns large language models evaluators with human preference.
HD-Eval inherits the essence from the evaluation mindset of human experts and enhances the alignment of LLM-based evaluators.
Extensive experiments on three evaluation domains demonstrate the superiority of HD-Eval in further aligning state-of-the-art evaluators.
arXiv Detail & Related papers (2024-02-24T08:01:32Z) - DCR-Consistency: Divide-Conquer-Reasoning for Consistency Evaluation and
Improvement of Large Language Models [4.953092503184905]
This work proposes DCR, an automated framework for evaluating and improving the consistency of Large Language Models (LLMs) generated texts.
We introduce an automatic metric converter (AMC) that translates the output from DCE into an interpretable numeric score.
Our approach also substantially reduces nearly 90% of output inconsistencies, showing promise for effective hallucination mitigation.
arXiv Detail & Related papers (2024-01-04T08:34:16Z) - CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation [87.44350003888646]
Eval-Instruct can acquire pointwise grading critiques with pseudo references and revise these critiques via multi-path prompting.
CritiqueLLM is empirically shown to outperform ChatGPT and all the open-source baselines.
arXiv Detail & Related papers (2023-11-30T16:52:42Z) - Exploring the Reliability of Large Language Models as Customized Evaluators for Diverse NLP Tasks [65.69651759036535]
We analyze whether large language models (LLMs) can serve as reliable alternatives to humans.
This paper explores both conventional tasks (e.g., story generation) and alignment tasks (e.g., math reasoning)
We find that LLM evaluators can generate unnecessary criteria or omit crucial criteria, resulting in a slight deviation from the experts.
arXiv Detail & Related papers (2023-10-30T17:04:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.