HAUR: Human Annotation Understanding and Recognition Through Text-Heavy Images
- URL: http://arxiv.org/abs/2412.18327v1
- Date: Tue, 24 Dec 2024 10:25:41 GMT
- Title: HAUR: Human Annotation Understanding and Recognition Through Text-Heavy Images
- Authors: Yuchen Yang, Haoran Yan, Yanhao Chen, Qingqiang Wu, Qingqi Hong,
- Abstract summary: Vision Question Answering (VQA) tasks use images to convey critical information to answer text-based questions.
Our dataset and model will be released soon.
- Score: 4.468589513127865
- License:
- Abstract: Vision Question Answering (VQA) tasks use images to convey critical information to answer text-based questions, which is one of the most common forms of question answering in real-world scenarios. Numerous vision-text models exist today and have performed well on certain VQA tasks. However, these models exhibit significant limitations in understanding human annotations on text-heavy images. To address this, we propose the Human Annotation Understanding and Recognition (HAUR) task. As part of this effort, we introduce the Human Annotation Understanding and Recognition-5 (HAUR-5) dataset, which encompasses five common types of human annotations. Additionally, we developed and trained our model, OCR-Mix. Through comprehensive cross-model comparisons, our results demonstrate that OCR-Mix outperforms other models in this task. Our dataset and model will be released soon .
Related papers
- Are VLMs Really Blind [3.052971829873887]
Vision Language Models excel in handling a wide range of complex tasks.
These models fail to perform well on low-level basic visual tasks.
Our work presents a novel automatic pipeline designed to extract key information from images in response to specific questions.
arXiv Detail & Related papers (2024-10-29T13:20:50Z) - See then Tell: Enhancing Key Information Extraction with Vision Grounding [54.061203106565706]
We introduce STNet (See then Tell Net), a novel end-to-end model designed to deliver precise answers with relevant vision grounding.
To enhance the model's seeing capabilities, we collect extensive structured table recognition datasets.
arXiv Detail & Related papers (2024-09-29T06:21:05Z) - VEGA: Learning Interleaved Image-Text Comprehension in Vision-Language Large Models [76.94378391979228]
We introduce a new, more demanding task known as Interleaved Image-Text (IITC)
This task challenges models to discern and disregard superfluous elements in both images and text to accurately answer questions.
In support of this task, we further craft a new VEGA dataset, tailored for the IITC task on scientific content, and devised a subtask, Image-Text Association (ITA)
arXiv Detail & Related papers (2024-06-14T17:59:40Z) - ConTextual: Evaluating Context-Sensitive Text-Rich Visual Reasoning in Large Multimodal Models [92.60282074937305]
We introduce ConTextual, a novel dataset featuring human-crafted instructions that require context-sensitive reasoning for text-rich images.
We conduct experiments to assess the performance of 14 foundation models and establish a human performance baseline.
We observe a significant performance gap of 30.8% between GPT-4V and human performance.
arXiv Detail & Related papers (2024-01-24T09:07:11Z) - Making the V in Text-VQA Matter [1.2962828085662563]
Text-based VQA aims at answering questions by reading the text present in the images.
Recent studies have shown that the question-answer pairs in the dataset are more focused on the text present in the image.
The models trained on this dataset predict biased answers due to the lack of understanding of visual context.
arXiv Detail & Related papers (2023-08-01T05:28:13Z) - Learning Transferable Pedestrian Representation from Multimodal
Information Supervision [174.5150760804929]
VAL-PAT is a novel framework that learns transferable representations to enhance various pedestrian analysis tasks with multimodal information.
We first perform pre-training on LUPerson-TA dataset, where each image contains text and attribute annotations.
We then transfer the learned representations to various downstream tasks, including person reID, person attribute recognition and text-based person search.
arXiv Detail & Related papers (2023-04-12T01:20:58Z) - TIFA: Accurate and Interpretable Text-to-Image Faithfulness Evaluation
with Question Answering [86.38098280689027]
We introduce an automatic evaluation metric that measures the faithfulness of a generated image to its text input via visual question answering (VQA)
We present a comprehensive evaluation of existing text-to-image models using a benchmark consisting of 4K diverse text inputs and 25K questions across 12 categories (object, counting, etc.)
arXiv Detail & Related papers (2023-03-21T14:41:02Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
We show that recent advances in each modality, CLIP image representations and scaling of language models, do not consistently improve multimodal self-rationalization of tasks with multimodal inputs.
Our findings call for a backbone modelling approach that can be built on to advance text generation from images and text beyond image captioning.
arXiv Detail & Related papers (2022-05-24T00:52:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.