The Value of AI-Generated Metadata for UGC Platforms: Evidence from a Large-scale Field Experiment
- URL: http://arxiv.org/abs/2412.18337v1
- Date: Tue, 24 Dec 2024 10:47:27 GMT
- Title: The Value of AI-Generated Metadata for UGC Platforms: Evidence from a Large-scale Field Experiment
- Authors: Xinyi Zhang, Chenshuo Sun, Renyu Zhang, Khim-Yong Goh,
- Abstract summary: We conducted a field experiment on a short-video platform in Asia to provide about 1 million users access to AI-generated titles for their uploaded videos.
Our findings show that the provision of AI-generated titles significantly boosted content consumption, increasing valid watches by 1.6% and watch duration by 0.9%.
This viewership-boost effect was largely attributed to the use of this generative AI (GAI) tool increasing the likelihood of videos having a title by 41.4%.
- Score: 6.8951681566687055
- License:
- Abstract: AI-generated content (AIGC), such as advertisement copy, product descriptions, and social media posts, is becoming ubiquitous in business practices. However, the value of AI-generated metadata, such as titles, remains unclear on user-generated content (UGC) platforms. To address this gap, we conducted a large-scale field experiment on a leading short-video platform in Asia to provide about 1 million users access to AI-generated titles for their uploaded videos. Our findings show that the provision of AI-generated titles significantly boosted content consumption, increasing valid watches by 1.6% and watch duration by 0.9%. When producers adopted these titles, these increases jumped to 7.1% and 4.1%, respectively. This viewership-boost effect was largely attributed to the use of this generative AI (GAI) tool increasing the likelihood of videos having a title by 41.4%. The effect was more pronounced for groups more affected by metadata sparsity. Mechanism analysis revealed that AI-generated metadata improved user-video matching accuracy in the platform's recommender system. Interestingly, for a video for which the producer would have posted a title anyway, adopting the AI-generated title decreased its viewership on average, implying that AI-generated titles may be of lower quality than human-generated ones. However, when producers chose to co-create with GAI and significantly revised the AI-generated titles, the videos outperformed their counterparts with either fully AI-generated or human-generated titles, showcasing the benefits of human-AI co-creation. This study highlights the value of AI-generated metadata and human-AI metadata co-creation in enhancing user-content matching and content consumption for UGC platforms.
Related papers
- Generative Ghost: Investigating Ranking Bias Hidden in AI-Generated Videos [106.5804660736763]
Video information retrieval remains a fundamental approach for accessing video content.
We build on the observation that retrieval models often favor AI-generated content in ad-hoc and image retrieval tasks.
We investigate whether similar biases emerge in the context of challenging video retrieval.
arXiv Detail & Related papers (2025-02-11T07:43:47Z) - Detecting AI-Generated Text in Educational Content: Leveraging Machine Learning and Explainable AI for Academic Integrity [1.1137087573421256]
This study seeks to enhance academic integrity by providing tools to detect AI-generated content in student work.
We evaluate various machine learning (ML) and deep learning (DL) algorithms on the CyberHumanAI dataset.
Our proposed model achieved approximately 77.5% accuracy compared to GPTZero's 48.5% accuracy when tasked to classify Pure AI, Pure Human, and mixed class.
arXiv Detail & Related papers (2025-01-06T18:34:20Z) - GAIA: Rethinking Action Quality Assessment for AI-Generated Videos [56.047773400426486]
Action quality assessment (AQA) algorithms predominantly focus on actions from real specific scenarios and are pre-trained with normative action features.
We construct GAIA, a Generic AI-generated Action dataset, by conducting a large-scale subjective evaluation from a novel causal reasoning-based perspective.
Results show that traditional AQA methods, action-related metrics in recent T2V benchmarks, and mainstream video quality methods perform poorly with an average SRCC of 0.454, 0.191, and 0.519, respectively.
arXiv Detail & Related papers (2024-06-10T08:18:07Z) - The Influencer Next Door: How Misinformation Creators Use GenAI [1.1650821883155187]
We find that non-experts increasingly use GenAI to remix, repackage, and (re)produce content to meet their personal needs and desires.
We analyze how these understudied emergent uses of GenAI produce new or accelerated misinformation harms.
arXiv Detail & Related papers (2024-05-22T11:40:22Z) - The Impact of Generative Artificial Intelligence on Market Equilibrium: Evidence from a Natural Experiment [19.963531237647103]
Generative artificial intelligence (AI) exhibits the capability to generate creative content akin to human output with greater efficiency and reduced costs.
This paper empirically investigates the impact of generative AI on market equilibrium, in the context of China's leading art outsourcing platform.
Our analysis shows that the advent of generative AI led to a 64% reduction in average prices, yet it simultaneously spurred a 121% increase in order volume and a 56% increase in overall revenue.
arXiv Detail & Related papers (2023-11-13T04:31:53Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - Where are we in the search for an Artificial Visual Cortex for Embodied
Intelligence? [106.81451807227103]
We present the largest and most comprehensive empirical study of pre-trained visual representations (PVRs) or visual 'foundation models' for Embodied AI.
To study the effect of pre-training data size and diversity, we combine over 4,000 hours of egocentric videos from 7 different sources.
Our largest model, named VC-1, outperforms all prior PVRs on average but does not universally dominate either.
arXiv Detail & Related papers (2023-03-31T17:56:33Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC)
The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace.
arXiv Detail & Related papers (2023-03-07T20:36:13Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.