GeFL: Model-Agnostic Federated Learning with Generative Models
- URL: http://arxiv.org/abs/2412.18460v1
- Date: Tue, 24 Dec 2024 14:39:47 GMT
- Title: GeFL: Model-Agnostic Federated Learning with Generative Models
- Authors: Honggu Kang, Seohyeon Cha, Joonhyuk Kang,
- Abstract summary: Federated learning (FL) is a promising paradigm in distributed learning while preserving the privacy of users.
We propose Generative Model-Aided Federated Learning (GeFL), incorporating a generative model that aggregates global knowledge across users of heterogeneous models.
We empirically demonstrate the consistent performance gains of GeFL-F, while demonstrating better privacy preservation and robustness to a large number of clients.
- Score: 3.4546761246181696
- License:
- Abstract: Federated learning (FL) is a promising paradigm in distributed learning while preserving the privacy of users. However, the increasing size of recent models makes it unaffordable for a few users to encompass the model. It leads the users to adopt heterogeneous models based on their diverse computing capabilities and network bandwidth. Correspondingly, FL with heterogeneous models should be addressed, given that FL typically involves training a single global model. In this paper, we propose Generative Model-Aided Federated Learning (GeFL), incorporating a generative model that aggregates global knowledge across users of heterogeneous models. Our experiments on various classification tasks demonstrate notable performance improvements of GeFL compared to baselines, as well as limitations in terms of privacy and scalability. To tackle these concerns, we introduce a novel framework, GeFL-F. It trains target networks aided by feature-generative models. We empirically demonstrate the consistent performance gains of GeFL-F, while demonstrating better privacy preservation and robustness to a large number of clients. Codes are available at [1].
Related papers
- Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - NeFL: Nested Model Scaling for Federated Learning with System Heterogeneous Clients [44.89061671579694]
Federated learning (FL) enables distributed training while preserving data privacy, but stragglers-slow or incapable clients-can significantly slow down the total training time and degrade performance.
We propose nested federated learning (NeFL), a framework that efficiently divides deep neural networks into submodels using both depthwise and widthwise scaling.
NeFL achieves performance gain, especially for the worst-case submodel compared to baseline approaches.
arXiv Detail & Related papers (2023-08-15T13:29:14Z) - Confidence-aware Personalized Federated Learning via Variational
Expectation Maximization [34.354154518009956]
We present a novel framework for personalized Federated Learning (PFL)
PFL is a distributed learning scheme to train a shared model across clients.
We present a novel framework for PFL based on hierarchical modeling and variational inference.
arXiv Detail & Related papers (2023-05-21T20:12:27Z) - Closing the Gap between Client and Global Model Performance in
Heterogeneous Federated Learning [2.1044900734651626]
We show how the chosen approach for training custom client models has an impact on the global model.
We propose a new approach that combines KD and Learning without Forgetting (LwoF) to produce improved personalised models.
arXiv Detail & Related papers (2022-11-07T11:12:57Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - No One Left Behind: Inclusive Federated Learning over Heterogeneous
Devices [79.16481453598266]
We propose InclusiveFL, a client-inclusive federated learning method to handle this problem.
The core idea of InclusiveFL is to assign models of different sizes to clients with different computing capabilities.
We also propose an effective method to share the knowledge among multiple local models with different sizes.
arXiv Detail & Related papers (2022-02-16T13:03:27Z) - Multi-Center Federated Learning [62.32725938999433]
Federated learning (FL) can protect data privacy in distributed learning.
It merely collects local gradients from users without access to their data.
We propose a novel multi-center aggregation mechanism.
arXiv Detail & Related papers (2021-08-19T12:20:31Z) - Personalized Federated Learning with Clustered Generalization [16.178571176116073]
We study the recent emerging personalized learning (PFL) that aims at dealing with the challenging problem of Non-I.I.D. data in the learning setting.
Key difference between PFL and conventional FL methods in the training target.
We propose a novel concept called clustered generalization to handle the challenge of statistical heterogeneity in FL.
arXiv Detail & Related papers (2021-06-24T14:17:00Z) - Federated Mutual Learning [65.46254760557073]
Federated Mutual Leaning (FML) allows clients training a generalized model collaboratively and a personalized model independently.
The experiments show that FML can achieve better performance than alternatives in typical Federated learning setting.
arXiv Detail & Related papers (2020-06-27T09:35:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.