Weyl-Heisenberg covariant quantization for the discrete torus
- URL: http://arxiv.org/abs/2412.18521v1
- Date: Tue, 24 Dec 2024 16:03:20 GMT
- Title: Weyl-Heisenberg covariant quantization for the discrete torus
- Authors: Romain Murenzi, Aidan Zlotak, Jean Pierre Gazeau,
- Abstract summary: Covariant integral quantization is implemented for systems whose phase space is $Z_d times Z_d$, i.e., for systems moving on the discrete periodic set $Z_d= 0,1,dotsc d-1$ mod$ d$.
We derive the corresponding covariant integral quantizations from (weight) functions on the phase space, and display their phase space portrait.
- Score: 0.16385815610837165
- License:
- Abstract: Covariant integral quantization is implemented for systems whose phase space is $Z_{d} \times Z_{d}$, i.e., for systems moving on the discrete periodic set $Z_d= \{0,1,\dotsc d-1$ mod$ d\}$. The symmetry group of this phase space is the periodic discrete version of the Weyl-Heisenberg group, namely the central extension of the abelian group $Z_d \times Z_d$. In this regard, the phase space is viewed as the left coset of the group with its center. The non-trivial unitary irreducible representation of this group, as acting on $L^2(Z_{N})$, is square integrable on the phase phase. We derive the corresponding covariant integral quantizations from (weight) functions on the phase space, and display their phase space portrait.
Related papers
- Supersymmetric Klein-Gordon and Dirac oscillators [55.2480439325792]
We show that the covariant phase space of the supersymmetric version of the relativistic oscillator is the odd tangent bundle of the space $Z_6$.
We obtain components of the spinor field that are holomorphic and antiholomorphic functions from Bergman spaces on $Z_6$ with different weight functions.
arXiv Detail & Related papers (2024-11-29T09:50:24Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Klein-Gordon oscillators and Bergman spaces [55.2480439325792]
We consider classical and quantum dynamics of relativistic oscillator in Minkowski space $mathbbR3,1$.
The general solution of this model is given by functions from the weighted Bergman space of square-integrable holomorphic (for particles) and antiholomorphic functions on the K"ahler-Einstein manifold $Z_6$.
arXiv Detail & Related papers (2024-05-23T09:20:56Z) - Integral Quantization for the Discrete Cylinder [0.456877715768796]
We show how to derive corresponding covariant integral quantizations from (weight) functions on the phase space.
We also look at the specific cases of coherent states built from shifted gaussians, Von Mises, Poisson, and Fej'er kernels.
arXiv Detail & Related papers (2022-08-19T21:23:43Z) - Quantum models a la Gabor for space-time metric [0.3149883354098941]
Weyl-Heisenberg integral quantization is implemented to transform functions on phase space $left(x,kright)$ into Hilbertian operators.
The procedure is first applied to the variables $left(x,kright)$ and produces canonically conjugate essentially self-adjoint operators.
It is next applied to the metric field $g_munu(x)$ of general relativity and yields regularised semi-classical phase space portraits.
arXiv Detail & Related papers (2022-05-19T17:22:54Z) - Complementarity in quantum walks [0.08896991256227595]
We study discrete-time quantum walks on $d$-cycles with a position and coin-dependent phase-shift.
For prime $d$ there exists a strong complementarity property between the eigenvectors of two quantum walk evolution operators.
We show that the complementarity is still present in the continuous version of this model, which corresponds to a one-dimensional Dirac particle.
arXiv Detail & Related papers (2022-05-11T12:47:59Z) - The Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) Equation for
Two-Dimensional Systems [62.997667081978825]
Open quantum systems can obey the Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) equation.
We exhaustively study the case of a Hilbert space dimension of $2$.
arXiv Detail & Related papers (2022-04-16T07:03:54Z) - Boundary time crystals in collective $d$-level systems [64.76138964691705]
Boundary time crystals are non-equilibrium phases of matter occurring in quantum systems in contact to an environment.
We study BTC's in collective $d$-level systems, focusing in the cases with $d=2$, $3$ and $4$.
arXiv Detail & Related papers (2021-02-05T19:00:45Z) - Discrete phase space and continuous time relativistic quantum mechanics
I: Planck oscillators and closed string-like circular orbits [0.0]
This paper investigates the discrete phase space continuous time representation of relativistic quantum mechanics involving a characteristic length $l$.
Fundamental physical constants such as $hbar$, $c$, and $l$ are retained for most sections of the paper.
arXiv Detail & Related papers (2020-12-28T15:03:53Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.