Explaining in Diffusion: Explaining a Classifier Through Hierarchical Semantics with Text-to-Image Diffusion Models
- URL: http://arxiv.org/abs/2412.18604v1
- Date: Tue, 24 Dec 2024 18:58:28 GMT
- Title: Explaining in Diffusion: Explaining a Classifier Through Hierarchical Semantics with Text-to-Image Diffusion Models
- Authors: Tahira Kazimi, Ritika Allada, Pinar Yanardag,
- Abstract summary: DiffEx is a novel method that leverages the capabilities of text-to-image diffusion models to explain classifier decisions.
Our experiments demonstrate that DiffEx is able to cover a significantly broader spectrum of semantics compared to its GAN counterparts.
- Score: 3.3454373538792552
- License:
- Abstract: Classifiers are important components in many computer vision tasks, serving as the foundational backbone of a wide variety of models employed across diverse applications. However, understanding the decision-making process of classifiers remains a significant challenge. We propose DiffEx, a novel method that leverages the capabilities of text-to-image diffusion models to explain classifier decisions. Unlike traditional GAN-based explainability models, which are limited to simple, single-concept analyses and typically require training a new model for each classifier, our approach can explain classifiers that focus on single concepts (such as faces or animals) as well as those that handle complex scenes involving multiple concepts. DiffEx employs vision-language models to create a hierarchical list of semantics, allowing users to identify not only the overarching semantic influences on classifiers (e.g., the 'beard' semantic in a facial classifier) but also their sub-types, such as 'goatee' or 'Balbo' beard. Our experiments demonstrate that DiffEx is able to cover a significantly broader spectrum of semantics compared to its GAN counterparts, providing a hierarchical tool that delivers a more detailed and fine-grained understanding of classifier decisions.
Related papers
- Accurate Explanation Model for Image Classifiers using Class Association Embedding [5.378105759529487]
We propose a generative explanation model that combines the advantages of global and local knowledge.
Class association embedding (CAE) encodes each sample into a pair of separated class-associated and individual codes.
Building-block coherency feature extraction algorithm is proposed that efficiently separates class-associated features from individual ones.
arXiv Detail & Related papers (2024-06-12T07:41:00Z) - Diffexplainer: Towards Cross-modal Global Explanations with Diffusion Models [51.21351775178525]
DiffExplainer is a novel framework that, leveraging language-vision models, enables multimodal global explainability.
It employs diffusion models conditioned on optimized text prompts, synthesizing images that maximize class outputs.
The analysis of generated visual descriptions allows for automatic identification of biases and spurious features.
arXiv Detail & Related papers (2024-04-03T10:11:22Z) - Diffusion Models Beat GANs on Image Classification [37.70821298392606]
Diffusion models have risen to prominence as a state-of-the-art method for image generation, denoising, inpainting, super-resolution, manipulation, etc.
We present our findings that these embeddings are useful beyond the noise prediction task, as they contain discriminative information and can also be leveraged for classification.
We find that with careful feature selection and pooling, diffusion models outperform comparable generative-discriminative methods for classification tasks.
arXiv Detail & Related papers (2023-07-17T17:59:40Z) - Multi-Modal Classifiers for Open-Vocabulary Object Detection [104.77331131447541]
The goal of this paper is open-vocabulary object detection (OVOD)
We adopt a standard two-stage object detector architecture.
We explore three ways via: language descriptions, image exemplars, or a combination of the two.
arXiv Detail & Related papers (2023-06-08T18:31:56Z) - Diffusion Visual Counterfactual Explanations [51.077318228247925]
Visual Counterfactual Explanations (VCEs) are an important tool to understand the decisions of an image.
Current approaches for the generation of VCEs are restricted to adversarially robust models and often contain non-realistic artefacts.
In this paper, we overcome this by generating Visual Diffusion Counterfactual Explanations (DVCEs) for arbitrary ImageNet classifiers.
arXiv Detail & Related papers (2022-10-21T09:35:47Z) - ELUDE: Generating interpretable explanations via a decomposition into
labelled and unlabelled features [23.384134043048807]
We develop an explanation framework that decomposes a model's prediction into two parts.
By identifying the latter, we are able to analyze the "unexplained" portion of the model.
We show that the set of unlabelled features can generalize to multiple models trained with the same feature space.
arXiv Detail & Related papers (2022-06-15T17:36:55Z) - Prototype Based Classification from Hierarchy to Fairness [7.129830575525267]
A new neural network architecture, the concept subspace network (CSN), generalizes existing specialized classifiers to produce a unified model.
CSNs reproduce state-of-the-art results in fair classification when enforcing concept independence.
The CSN is inspired by existing prototype-based classifiers that promote interpretability.
arXiv Detail & Related papers (2022-05-27T14:21:41Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Rich Semantics Improve Few-shot Learning [49.11659525563236]
We show that by using 'class-level' language descriptions, that can be acquired with minimal annotation cost, we can improve the few-shot learning performance.
We develop a Transformer based forward and backward encoding mechanism to relate visual and semantic tokens.
arXiv Detail & Related papers (2021-04-26T16:48:27Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
We present a two-stage framework for deep one-class classification.
We first learn self-supervised representations from one-class data, and then build one-class classifiers on learned representations.
In experiments, we demonstrate state-of-the-art performance on visual domain one-class classification benchmarks.
arXiv Detail & Related papers (2020-11-04T23:33:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.