Provable Uncertainty Decomposition via Higher-Order Calibration
- URL: http://arxiv.org/abs/2412.18808v1
- Date: Wed, 25 Dec 2024 07:26:36 GMT
- Title: Provable Uncertainty Decomposition via Higher-Order Calibration
- Authors: Gustaf Ahdritz, Aravind Gollakota, Parikshit Gopalan, Charlotte Peale, Udi Wieder,
- Abstract summary: We give a principled method for decomposing the predictive uncertainty of a model into aleatoric and epistemic components.
Our method is based on the new notion of higher-order calibration.
We demonstrate through experiments that our method produces meaningful uncertainty decompositions for image classification.
- Score: 4.969075533165688
- License:
- Abstract: We give a principled method for decomposing the predictive uncertainty of a model into aleatoric and epistemic components with explicit semantics relating them to the real-world data distribution. While many works in the literature have proposed such decompositions, they lack the type of formal guarantees we provide. Our method is based on the new notion of higher-order calibration, which generalizes ordinary calibration to the setting of higher-order predictors that predict mixtures over label distributions at every point. We show how to measure as well as achieve higher-order calibration using access to $k$-snapshots, namely examples where each point has $k$ independent conditional labels. Under higher-order calibration, the estimated aleatoric uncertainty at a point is guaranteed to match the real-world aleatoric uncertainty averaged over all points where the prediction is made. To our knowledge, this is the first formal guarantee of this type that places no assumptions whatsoever on the real-world data distribution. Importantly, higher-order calibration is also applicable to existing higher-order predictors such as Bayesian and ensemble models and provides a natural evaluation metric for such models. We demonstrate through experiments that our method produces meaningful uncertainty decompositions for image classification.
Related papers
- Sparse Activations as Conformal Predictors [19.298282860984116]
We find a novel connection between conformal prediction and sparse softmax-like transformations.
We introduce new non-conformity scores for classification that make the calibration process correspond to the widely used temperature scaling method.
We show that the proposed method achieves competitive results in terms of coverage, efficiency, and adaptiveness.
arXiv Detail & Related papers (2025-02-20T17:53:41Z) - Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
Conformal prediction provides model-agnostic and distribution-free uncertainty quantification.
Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data.
We propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning.
arXiv Detail & Related papers (2024-10-13T15:37:11Z) - Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
Generative models lack rigorous statistical guarantees for their outputs.
We propose a sequential conformal prediction method producing prediction sets that satisfy a rigorous statistical guarantee.
This guarantee states that with high probability, the prediction sets contain at least one admissible (or valid) example.
arXiv Detail & Related papers (2024-10-02T15:26:52Z) - Domain-adaptive and Subgroup-specific Cascaded Temperature Regression
for Out-of-distribution Calibration [16.930766717110053]
We propose a novel meta-set-based cascaded temperature regression method for post-hoc calibration.
We partition each meta-set into subgroups based on predicted category and confidence level, capturing diverse uncertainties.
A regression network is then trained to derive category-specific and confidence-level-specific scaling, achieving calibration across meta-sets.
arXiv Detail & Related papers (2024-02-14T14:35:57Z) - Predicting generalization performance with correctness discriminators [64.00420578048855]
We present a novel model that establishes upper and lower bounds on the accuracy, without requiring gold labels for the unseen data.
We show across a variety of tagging, parsing, and semantic parsing tasks that the gold accuracy is reliably between the predicted upper and lower bounds.
arXiv Detail & Related papers (2023-11-15T22:43:42Z) - Uncertainty Estimates of Predictions via a General Bias-Variance
Decomposition [7.811916700683125]
We introduce a bias-variance decomposition for proper scores, giving rise to the Bregman Information as the variance term.
We showcase the practical relevance of this decomposition on several downstream tasks, including model ensembles and confidence regions.
arXiv Detail & Related papers (2022-10-21T21:24:37Z) - Test-time Recalibration of Conformal Predictors Under Distribution Shift
Based on Unlabeled Examples [30.61588337557343]
Conformal predictors provide uncertainty estimates by computing a set of classes with a user-specified probability.
We propose a method that provides excellent uncertainty estimates under natural distribution shifts.
arXiv Detail & Related papers (2022-10-09T04:46:00Z) - Distribution-free uncertainty quantification for classification under
label shift [105.27463615756733]
We focus on uncertainty quantification (UQ) for classification problems via two avenues.
We first argue that label shift hurts UQ, by showing degradation in coverage and calibration.
We examine these techniques theoretically in a distribution-free framework and demonstrate their excellent practical performance.
arXiv Detail & Related papers (2021-03-04T20:51:03Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z) - Individual Calibration with Randomized Forecasting [116.2086707626651]
We show that calibration for individual samples is possible in the regression setup if the predictions are randomized.
We design a training objective to enforce individual calibration and use it to train randomized regression functions.
arXiv Detail & Related papers (2020-06-18T05:53:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.