DiFiC: Your Diffusion Model Holds the Secret to Fine-Grained Clustering
- URL: http://arxiv.org/abs/2412.18838v1
- Date: Wed, 25 Dec 2024 08:55:48 GMT
- Title: DiFiC: Your Diffusion Model Holds the Secret to Fine-Grained Clustering
- Authors: Ruohong Yang, Peng Hu, Xi Peng, Xiting Liu, Yunfan Li,
- Abstract summary: DiFiC is a fine-grained clustering method building upon the conditional diffusion model.
Experiments demonstrate that DiFiC outperforms both state-of-the-art discriminative and generative clustering methods.
We hope the success of DiFiC will inspire future research to unlock the potential of diffusion models in tasks beyond generation.
- Score: 13.960207111424456
- License:
- Abstract: Fine-grained clustering is a practical yet challenging task, whose essence lies in capturing the subtle differences between instances of different classes. Such subtle differences can be easily disrupted by data augmentation or be overwhelmed by redundant information in data, leading to significant performance degradation for existing clustering methods. In this work, we introduce DiFiC a fine-grained clustering method building upon the conditional diffusion model. Distinct from existing works that focus on extracting discriminative features from images, DiFiC resorts to deducing the textual conditions used for image generation. To distill more precise and clustering-favorable object semantics, DiFiC further regularizes the diffusion target and guides the distillation process utilizing neighborhood similarity. Extensive experiments demonstrate that DiFiC outperforms both state-of-the-art discriminative and generative clustering methods on four fine-grained image clustering benchmarks. We hope the success of DiFiC will inspire future research to unlock the potential of diffusion models in tasks beyond generation. The code will be released.
Related papers
- Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
Diffusion models trained on real-world datasets often yield inferior fidelity for tail classes.
Deep generative models, including diffusion models, are biased towards classes with abundant training images.
We propose a method based on contrastive learning to minimize the overlap between distributions of synthetic images for different classes.
arXiv Detail & Related papers (2024-02-16T16:47:21Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
Guidance serves as a key concept in diffusion models, yet its effectiveness is often limited by the need for extra data annotation or pretraining.
We propose a framework to extract guidance from, and specifically for, diffusion models.
arXiv Detail & Related papers (2023-12-14T11:19:11Z) - Do text-free diffusion models learn discriminative visual representations? [39.78043004824034]
We explore the possibility of a unified representation learner: a model which addresses both families of tasks simultaneously.
We develop diffusion models, a state-of-the-art method for generative tasks, as a prime candidate.
We find that diffusion models are better than GANs, and, with our fusion and feedback mechanisms, can compete with state-of-the-art unsupervised image representation learning methods for discriminative tasks.
arXiv Detail & Related papers (2023-11-29T18:59:59Z) - Diffusion-TTA: Test-time Adaptation of Discriminative Models via
Generative Feedback [97.0874638345205]
generative models can be great test-time adapters for discriminative models.
Our method, Diffusion-TTA, adapts pre-trained discriminative models to each unlabelled example in the test set.
We show Diffusion-TTA significantly enhances the accuracy of various large-scale pre-trained discriminative models.
arXiv Detail & Related papers (2023-11-27T18:59:53Z) - Detail Reinforcement Diffusion Model: Augmentation Fine-Grained Visual Categorization in Few-Shot Conditions [11.121652649243119]
Diffusion models have been widely adopted in data augmentation due to their outstanding diversity in data generation.
We propose a novel approach termed the detail reinforcement diffusion model(DRDM)
It leverages the rich knowledge of large models for fine-grained data augmentation and comprises two key components including discriminative semantic recombination (DSR) and spatial knowledge reference(SKR)
arXiv Detail & Related papers (2023-09-15T01:28:59Z) - DiffDis: Empowering Generative Diffusion Model with Cross-Modal
Discrimination Capability [75.9781362556431]
We propose DiffDis to unify the cross-modal generative and discriminative pretraining into one single framework under the diffusion process.
We show that DiffDis outperforms single-task models on both the image generation and the image-text discriminative tasks.
arXiv Detail & Related papers (2023-08-18T05:03:48Z) - Diffusion Models Beat GANs on Image Classification [37.70821298392606]
Diffusion models have risen to prominence as a state-of-the-art method for image generation, denoising, inpainting, super-resolution, manipulation, etc.
We present our findings that these embeddings are useful beyond the noise prediction task, as they contain discriminative information and can also be leveraged for classification.
We find that with careful feature selection and pooling, diffusion models outperform comparable generative-discriminative methods for classification tasks.
arXiv Detail & Related papers (2023-07-17T17:59:40Z) - Discffusion: Discriminative Diffusion Models as Few-shot Vision and Language Learners [88.07317175639226]
We propose a novel approach, Discriminative Stable Diffusion (DSD), which turns pre-trained text-to-image diffusion models into few-shot discriminative learners.
Our approach mainly uses the cross-attention score of a Stable Diffusion model to capture the mutual influence between visual and textual information.
arXiv Detail & Related papers (2023-05-18T05:41:36Z) - Your Diffusion Model is Secretly a Zero-Shot Classifier [90.40799216880342]
We show that density estimates from large-scale text-to-image diffusion models can be leveraged to perform zero-shot classification.
Our generative approach to classification attains strong results on a variety of benchmarks.
Our results are a step toward using generative over discriminative models for downstream tasks.
arXiv Detail & Related papers (2023-03-28T17:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.