Bootstrap Your Own Context Length
- URL: http://arxiv.org/abs/2412.18860v2
- Date: Wed, 19 Mar 2025 02:46:34 GMT
- Title: Bootstrap Your Own Context Length
- Authors: Liang Wang, Nan Yang, Xingxing Zhang, Xiaolong Huang, Furu Wei,
- Abstract summary: We introduce a bootstrapping approach to train long-context language models by exploiting their short-context capabilities only.<n>The proposed data synthesis workflow requires only a short-context language model, a text retriever, and a document collection.<n>We conduct experiments with the open-source Llama-3 family of models and demonstrate that our method can successfully extend the context length to up to 1M tokens.
- Score: 74.61148597039248
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a bootstrapping approach to train long-context language models by exploiting their short-context capabilities only. Our method utilizes a simple agent workflow to synthesize diverse long-context instruction tuning data, thereby eliminating the necessity for manual data collection and annotation. The proposed data synthesis workflow requires only a short-context language model, a text retriever, and a document collection, all of which are readily accessible within the open-source ecosystem. Subsequently, language models are fine-tuned using the synthesized data to extend their context lengths. In this manner, we effectively transfer the short-context capabilities of language models to long-context scenarios through a bootstrapping process. We conduct experiments with the open-source Llama-3 family of models and demonstrate that our method can successfully extend the context length to up to 1M tokens, achieving superior performance across various benchmarks.
Related papers
- Scaling Instruction-Tuned LLMs to Million-Token Contexts via Hierarchical Synthetic Data Generation [15.975325252309554]
We introduce a novel post-training synthetic data generation strategy designed to efficiently extend the context window of Large Language Models.
Our approach scalably extends to arbitrarily long context lengths, unconstrained by the length of available real-world data.
We demonstrate that our model, with a context length of up to 1M tokens, performs well on the RULER benchmark and InfiniteBench.
arXiv Detail & Related papers (2025-04-17T04:46:57Z) - From 128K to 4M: Efficient Training of Ultra-Long Context Large Language Models [54.44375226381814]
Long-context capabilities are essential for a wide range of applications, including document and video understanding, in-context learning, and inference-time scaling.
We introduce a efficient training recipe for building ultra-long context LLMs from aligned instruct model, pushing the boundaries of context lengths from 128K to 1M, 2M, and 4M tokens.
Our approach achieves state-of-the-art performance across a diverse set of long-context benchmarks.
arXiv Detail & Related papers (2025-04-08T16:58:58Z) - WildLong: Synthesizing Realistic Long-Context Instruction Data at Scale [86.25450054683172]
WildLong extracts meta-information from real user queries to produce scalable data.
It supports multi-document reasoning, such as cross-document comparison and aggregation.
It surpasses existing open-source long-context-optimized models across benchmarks.
arXiv Detail & Related papers (2025-02-23T18:59:09Z) - Generalizing From Short to Long: Effective Data Synthesis for Long-Context Instruction Tuning [103.65680870130839]
We investigate how to design instruction data for the post-training phase of a long context pre-trained model.
Our controlled study reveals that models instruction-tuned on short contexts can effectively generalize to longer ones.
Based on these findings, we propose context synthesis, a novel data synthesis framework.
arXiv Detail & Related papers (2025-02-21T17:02:40Z) - ACER: Automatic Language Model Context Extension via Retrieval [36.40066695682234]
Current open-weight generalist long-context models are still lacking in practical long-context processing tasks.
We build an textbfautomatic data synthesis pipeline that mimics this process using short-context LMs.
The short-context LMs are further tuned using these self-generated data to obtain task-specific long-context capabilities.
arXiv Detail & Related papers (2024-10-11T17:57:06Z) - How to Train Long-Context Language Models (Effectively) [75.5418485597276]
We study continued training and supervised fine-tuning (SFT) of a language model (LM) to make effective use of long-context information.
ProLong-8B, which is from Llama-3 and trained on 40B tokens, demonstrates state-of-the-art long-context performance among similarly sized models at a length of 128K.
arXiv Detail & Related papers (2024-10-03T16:46:52Z) - Leveraging Visual Tokens for Extended Text Contexts in Multi-Modal Learning [68.43706033424378]
This study introduces an innovative method designed to increase in-context text length in large language models (MLLMs) efficiently.
We present Visualized In-Context Text Processing (VisInContext), which processes long in-context text using visual tokens.
This technique significantly reduces GPU memory usage and floating point operations (FLOPs) for both training and inferenceing stage.
arXiv Detail & Related papers (2024-06-04T17:59:25Z) - LongSkywork: A Training Recipe for Efficiently Extending Context Length in Large Language Models [61.12177317970258]
LongSkywork is a long-context Large Language Model capable of processing up to 200,000 tokens.
We develop two novel methods for creating synthetic data.
LongSkywork achieves outstanding performance on a variety of long-context benchmarks.
arXiv Detail & Related papers (2024-06-02T03:34:41Z) - Quest: Query-centric Data Synthesis Approach for Long-context Scaling of Large Language Model [22.07414287186125]
Quest is a query-centric data method aggregating semantically relevant yet diverse documents.<n>It uses a generative model to predict potential queries for each document, grouping documents with similar queries and keywords.<n>Experiments demonstrate Quest's superior performance on long-context tasks, achieving remarkable results with context lengths of up to 1M tokens.
arXiv Detail & Related papers (2024-05-30T08:50:55Z) - Pre-Training to Learn in Context [138.0745138788142]
The ability of in-context learning is not fully exploited because language models are not explicitly trained to learn in context.
We propose PICL (Pre-training for In-Context Learning), a framework to enhance the language models' in-context learning ability.
Our experiments show that PICL is more effective and task-generalizable than a range of baselines, outperforming larger language models with nearly 4x parameters.
arXiv Detail & Related papers (2023-05-16T03:38:06Z) - Stabilized In-Context Learning with Pre-trained Language Models for Few
Shot Dialogue State Tracking [57.92608483099916]
Large pre-trained language models (PLMs) have shown impressive unaided performance across many NLP tasks.
For more complex tasks such as dialogue state tracking (DST), designing prompts that reliably convey the desired intent is nontrivial.
We introduce a saliency model to limit dialogue text length, allowing us to include more exemplars per query.
arXiv Detail & Related papers (2023-02-12T15:05:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.