UNIC-Adapter: Unified Image-instruction Adapter with Multi-modal Transformer for Image Generation
- URL: http://arxiv.org/abs/2412.18928v1
- Date: Wed, 25 Dec 2024 15:19:02 GMT
- Title: UNIC-Adapter: Unified Image-instruction Adapter with Multi-modal Transformer for Image Generation
- Authors: Lunhao Duan, Shanshan Zhao, Wenjun Yan, Yinglun Li, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, Mingming Gong, Gui-Song Xia,
- Abstract summary: We propose a new approach to unify controllable generation within a single framework.
Specifically, we propose the unified image-instruction adapter (UNIC-Adapter) built on the Multi-Modal-Diffusion Transformer architecture.
Our UNIC-Adapter effectively extracts multi-modal instruction information by incorporating both conditional images and task instructions.
- Score: 64.8341372591993
- License:
- Abstract: Recently, text-to-image generation models have achieved remarkable advancements, particularly with diffusion models facilitating high-quality image synthesis from textual descriptions. However, these models often struggle with achieving precise control over pixel-level layouts, object appearances, and global styles when using text prompts alone. To mitigate this issue, previous works introduce conditional images as auxiliary inputs for image generation, enhancing control but typically necessitating specialized models tailored to different types of reference inputs. In this paper, we explore a new approach to unify controllable generation within a single framework. Specifically, we propose the unified image-instruction adapter (UNIC-Adapter) built on the Multi-Modal-Diffusion Transformer architecture, to enable flexible and controllable generation across diverse conditions without the need for multiple specialized models. Our UNIC-Adapter effectively extracts multi-modal instruction information by incorporating both conditional images and task instructions, injecting this information into the image generation process through a cross-attention mechanism enhanced by Rotary Position Embedding. Experimental results across a variety of tasks, including pixel-level spatial control, subject-driven image generation, and style-image-based image synthesis, demonstrate the effectiveness of our UNIC-Adapter in unified controllable image generation.
Related papers
- MV-Adapter: Multi-view Consistent Image Generation Made Easy [60.93957644923608]
Existing multi-view image generation methods often make invasive modifications to pre-trained text-to-image models.
We present the first adapter for multi-view image generation, and MVAdapter, a versatile plug-and-play adapter.
arXiv Detail & Related papers (2024-12-04T18:48:20Z) - OmniBooth: Learning Latent Control for Image Synthesis with Multi-modal Instruction [32.08995899903304]
We present OmniBooth, an image generation framework that enables spatial control with instance-level multi-modal customization.
Our approach significantly expands the scope of text-to-image generation, and elevates it to a more versatile and practical dimension in controllability.
arXiv Detail & Related papers (2024-10-07T11:26:13Z) - PixWizard: Versatile Image-to-Image Visual Assistant with Open-Language Instructions [66.92809850624118]
PixWizard is an image-to-image visual assistant designed for image generation, manipulation, and translation based on free-from language instructions.
We tackle a variety of vision tasks into a unified image-text-to-image generation framework and curate an Omni Pixel-to-Pixel Instruction-Tuning dataset.
Our experiments demonstrate that PixWizard not only shows impressive generative and understanding abilities for images with diverse resolutions but also exhibits promising generalization capabilities with unseen tasks and human instructions.
arXiv Detail & Related papers (2024-09-23T17:59:46Z) - Instruct-Imagen: Image Generation with Multi-modal Instruction [90.04481955523514]
instruct-imagen is a model that tackles heterogeneous image generation tasks and generalizes across unseen tasks.
We introduce *multi-modal instruction* for image generation, a task representation articulating a range of generation intents with precision.
Human evaluation on various image generation datasets reveals that instruct-imagen matches or surpasses prior task-specific models in-domain.
arXiv Detail & Related papers (2024-01-03T19:31:58Z) - ControlStyle: Text-Driven Stylized Image Generation Using Diffusion
Priors [105.37795139586075]
We propose a new task for stylizing'' text-to-image models, namely text-driven stylized image generation.
We present a new diffusion model (ControlStyle) via upgrading a pre-trained text-to-image model with a trainable modulation network.
Experiments demonstrate the effectiveness of our ControlStyle in producing more visually pleasing and artistic results.
arXiv Detail & Related papers (2023-11-09T15:50:52Z) - Unified Multi-Modal Latent Diffusion for Joint Subject and Text
Conditional Image Generation [63.061871048769596]
We present a novel Unified Multi-Modal Latent Diffusion (UMM-Diffusion) which takes joint texts and images containing specified subjects as input sequences.
To be more specific, both input texts and images are encoded into one unified multi-modal latent space.
Our method is able to generate high-quality images with complex semantics from both aspects of input texts and images.
arXiv Detail & Related papers (2023-03-16T13:50:20Z) - MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation [34.61940502872307]
MultiDiffusion is a unified framework that enables versatile and controllable image generation.
We show that MultiDiffusion can be readily applied to generate high quality and diverse images.
arXiv Detail & Related papers (2023-02-16T06:28:29Z) - Plug-and-Play Diffusion Features for Text-Driven Image-to-Image
Translation [10.39028769374367]
We present a new framework that takes text-to-image synthesis to the realm of image-to-image translation.
Our method harnesses the power of a pre-trained text-to-image diffusion model to generate a new image that complies with the target text.
arXiv Detail & Related papers (2022-11-22T20:39:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.