xSRL: Safety-Aware Explainable Reinforcement Learning -- Safety as a Product of Explainability
- URL: http://arxiv.org/abs/2412.19311v1
- Date: Thu, 26 Dec 2024 18:19:04 GMT
- Title: xSRL: Safety-Aware Explainable Reinforcement Learning -- Safety as a Product of Explainability
- Authors: Risal Shahriar Shefin, Md Asifur Rahman, Thai Le, Sarra Alqahtani,
- Abstract summary: We propose xSRL, a framework that integrates both local and global explanations to provide a comprehensive understanding of RL agents' behavior.
xSRL also enables developers to identify policy vulnerabilities through adversarial attacks, offering tools to debug and patch agents without retraining.
Our experiments and user studies demonstrate xSRL's effectiveness in increasing safety in RL systems, making them more reliable and trustworthy for real-world deployment.
- Score: 8.016667413960995
- License:
- Abstract: Reinforcement learning (RL) has shown great promise in simulated environments, such as games, where failures have minimal consequences. However, the deployment of RL agents in real-world systems such as autonomous vehicles, robotics, UAVs, and medical devices demands a higher level of safety and transparency, particularly when facing adversarial threats. Safe RL algorithms have been developed to address these concerns by optimizing both task performance and safety constraints. However, errors are inevitable, and when they occur, it is essential that the RL agents can also explain their actions to human operators. This makes trust in the safety mechanisms of RL systems crucial for effective deployment. Explainability plays a key role in building this trust by providing clear, actionable insights into the agent's decision-making process, ensuring that safety-critical decisions are well understood. While machine learning (ML) has seen significant advances in interpretability and visualization, explainability methods for RL remain limited. Current tools fail to address the dynamic, sequential nature of RL and its needs to balance task performance with safety constraints over time. The re-purposing of traditional ML methods, such as saliency maps, is inadequate for safety-critical RL applications where mistakes can result in severe consequences. To bridge this gap, we propose xSRL, a framework that integrates both local and global explanations to provide a comprehensive understanding of RL agents' behavior. xSRL also enables developers to identify policy vulnerabilities through adversarial attacks, offering tools to debug and patch agents without retraining. Our experiments and user studies demonstrate xSRL's effectiveness in increasing safety in RL systems, making them more reliable and trustworthy for real-world deployment. Code is available at https://github.com/risal-shefin/xSRL.
Related papers
- ActSafe: Active Exploration with Safety Constraints for Reinforcement Learning [48.536695794883826]
We present ActSafe, a novel model-based RL algorithm for safe and efficient exploration.
We show that ActSafe guarantees safety during learning while also obtaining a near-optimal policy in finite time.
In addition, we propose a practical variant of ActSafe that builds on latest model-based RL advancements.
arXiv Detail & Related papers (2024-10-12T10:46:02Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - Guided Online Distillation: Promoting Safe Reinforcement Learning by
Offline Demonstration [75.51109230296568]
We argue that extracting expert policy from offline data to guide online exploration is a promising solution to mitigate the conserveness issue.
We propose Guided Online Distillation (GOLD), an offline-to-online safe RL framework.
GOLD distills an offline DT policy into a lightweight policy network through guided online safe RL training, which outperforms both the offline DT policy and online safe RL algorithms.
arXiv Detail & Related papers (2023-09-18T00:22:59Z) - OmniSafe: An Infrastructure for Accelerating Safe Reinforcement Learning
Research [3.0536277689386453]
We introduce a foundational framework designed to expedite SafeRL research endeavors.
Our framework encompasses an array of algorithms spanning different RL domains and places heavy emphasis on safety elements.
arXiv Detail & Related papers (2023-05-16T09:22:14Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
We propose a safe model-free RL algorithm with a novel multiplicative value function consisting of a safety critic and a reward critic.
The safety critic predicts the probability of constraint violation and discounts the reward critic that only estimates constraint-free returns.
We evaluate our method in four safety-focused environments, including classical RL benchmarks augmented with safety constraints and robot navigation tasks with images and raw Lidar scans as observations.
arXiv Detail & Related papers (2023-03-07T18:29:15Z) - Safe Reinforcement Learning via Shielding for POMDPs [29.058332307331785]
Reinforcement learning (RL) in safety-critical environments requires an agent to avoid decisions with catastrophic consequences.
We propose and thoroughly evaluate a tight integration of formally-verified shields for POMDPs with state-of-the-art deep RL algorithms.
We empirically demonstrate that an RL agent using a shield, beyond being safe, converges to higher values of expected reward.
arXiv Detail & Related papers (2022-04-02T03:51:55Z) - SAUTE RL: Almost Surely Safe Reinforcement Learning Using State
Augmentation [63.25418599322092]
Satisfying safety constraints almost surely (or with probability one) can be critical for deployment of Reinforcement Learning (RL) in real-life applications.
We address the problem by introducing Safety Augmented Markov Decision Processes (MDPs)
We show that Saute MDP allows to view Safe augmentation problem from a different perspective enabling new features.
arXiv Detail & Related papers (2022-02-14T08:57:01Z) - Constraint-Guided Reinforcement Learning: Augmenting the
Agent-Environment-Interaction [10.203602318836445]
Reinforcement Learning (RL) agents have great successes in solving tasks with large observation and action spaces from limited feedback.
This paper discusses the engineering of reliable agents via the integration of deep RL with constraint-based augmentation models.
Our results show that constraint-guidance does both provide reliability improvements and safer behavior, as well as accelerated training.
arXiv Detail & Related papers (2021-04-24T10:04:14Z) - Assured Learning-enabled Autonomy: A Metacognitive Reinforcement
Learning Framework [4.427447378048202]
Reinforcement learning (RL) agents with pre-specified reward functions cannot provide guaranteed safety across variety of circumstances.
An assured autonomous control framework is presented in this paper by empowering RL algorithms with metacognitive learning capabilities.
arXiv Detail & Related papers (2021-03-23T14:01:35Z) - Safe Reinforcement Learning Using Robust Action Governor [6.833157102376731]
Reinforcement Learning (RL) is essentially a trial-and-error learning procedure which may cause unsafe behavior during the exploration-and-exploitation process.
In this paper, we introduce a framework for safe RL that is based on integration of an RL algorithm with an add-on safety supervision module.
We illustrate this proposed safe RL framework through an application to automotive adaptive cruise control.
arXiv Detail & Related papers (2021-02-21T16:50:17Z) - Learning to be Safe: Deep RL with a Safety Critic [72.00568333130391]
A natural first approach toward safe RL is to manually specify constraints on the policy's behavior.
We propose to learn how to be safe in one set of tasks and environments, and then use that learned intuition to constrain future behaviors.
arXiv Detail & Related papers (2020-10-27T20:53:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.