Feature Alignment-Based Knowledge Distillation for Efficient Compression of Large Language Models
- URL: http://arxiv.org/abs/2412.19449v1
- Date: Fri, 27 Dec 2024 04:37:06 GMT
- Title: Feature Alignment-Based Knowledge Distillation for Efficient Compression of Large Language Models
- Authors: Shuo Wang, Chihang Wang, Jia Gao, Zhen Qi, Hongye Zheng, Xiaoxuan Liao,
- Abstract summary: This study proposes a knowledge distillation algorithm based on large language models and feature alignment.
The proposed model performs very close to the state-of-the-art GPT-4 model in terms of evaluation indicators such as perplexity, BLEU, ROUGE, and CER.
- Score: 4.737806982257592
- License:
- Abstract: This study proposes a knowledge distillation algorithm based on large language models and feature alignment, aiming to effectively transfer the knowledge of large pre-trained models into lightweight student models, thereby reducing computational costs while maintaining high model performance. Different from the traditional soft label distillation method, this method introduces a multi-layer feature alignment strategy to deeply align the intermediate features and attention mechanisms of the teacher model and the student model, maximally retaining the semantic expression ability and context modeling ability of the teacher model. In terms of method design, a multi-task loss function is constructed, including feature matching loss, attention alignment loss, and output distribution matching loss, to ensure multi-level information transfer through joint optimization. The experiments were comprehensively evaluated on the GLUE data set and various natural language processing tasks. The results show that the proposed model performs very close to the state-of-the-art GPT-4 model in terms of evaluation indicators such as perplexity, BLEU, ROUGE, and CER. At the same time, it far exceeds baseline models such as DeBERTa, XLNet, and GPT-3, showing significant performance improvements and computing efficiency advantages. Research results show that the feature alignment distillation strategy is an effective model compression method that can significantly reduce computational overhead and storage requirements while maintaining model capabilities. Future research can be further expanded in the directions of self-supervised learning, cross-modal feature alignment, and multi-task transfer learning to provide more flexible and efficient solutions for the deployment and optimization of deep learning models.
Related papers
- TAID: Temporally Adaptive Interpolated Distillation for Efficient Knowledge Transfer in Language Models [6.8298782282181865]
We introduce $textitTemporally Adaptive Interpolated Distillation (TAID)$, a novel knowledge distillation approach.
We show TAID's superior performance across various model sizes and architectures in both instruction tuning and pre-training scenarios.
These results demonstrate TAID's effectiveness in creating high-performing and efficient models, advancing the development of more accessible AI technologies.
arXiv Detail & Related papers (2025-01-28T13:31:18Z) - Streamlined Federated Unlearning: Unite as One to Be Highly Efficient [12.467630082668254]
"Right to be forgotten" laws and regulations has imposed new privacy requirements on federated learning (FL)
We propose a streamlined federated unlearning approach (SFU) aimed at effectively removing the influence of target data while preserving the model's performance on retained data without degradation.
arXiv Detail & Related papers (2024-11-28T12:52:48Z) - Over-parameterized Student Model via Tensor Decomposition Boosted Knowledge Distillation [10.48108719012248]
We focus on Knowledge Distillation (KD), where a compact student model is trained to mimic a larger teacher model.
In contrast to much of the previous work, we scale up the parameters of the student model during training.
arXiv Detail & Related papers (2024-11-10T12:40:59Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
Knowledge distillation (KD) is a technique that compresses large teacher models by training smaller student models to mimic them.
This paper introduces Online Knowledge Distillation (OKD), where the teacher network integrates small online modules to concurrently train with the student model.
OKD achieves or exceeds the performance of leading methods in various model architectures and sizes, reducing training time by up to fourfold.
arXiv Detail & Related papers (2024-09-19T07:05:26Z) - Efficient Point Cloud Classification via Offline Distillation Framework and Negative-Weight Self-Distillation Technique [46.266960248570086]
We introduce an innovative offline recording strategy that avoids the simultaneous loading of both teacher and student models.
This approach feeds a multitude of augmented samples into the teacher model, recording both the data augmentation parameters and the corresponding logit outputs.
Experimental results demonstrate that the proposed distillation strategy enables the student model to achieve performance comparable to state-of-the-art models.
arXiv Detail & Related papers (2024-09-03T16:12:12Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
We propose a Directed Acyclic Graph Factorization Machine (KD-DAGFM) to learn the high-order feature interactions from existing complex interaction models for CTR prediction via Knowledge Distillation.
KD-DAGFM achieves the best performance with less than 21.5% FLOPs of the state-of-the-art method on both online and offline experiments.
arXiv Detail & Related papers (2022-11-21T03:09:42Z) - Feeding What You Need by Understanding What You Learned [54.400455868448695]
Machine Reading (MRC) reveals the ability to understand a given text passage and answer questions based on it.
Existing research works in MRC rely heavily on large-size models and corpus to improve the performance evaluated by metrics such as Exact Match.
We argue that a deep understanding of model capabilities and data properties can help us feed a model with appropriate training data.
arXiv Detail & Related papers (2022-03-05T14:15:59Z) - Self-Feature Regularization: Self-Feature Distillation Without Teacher
Models [0.0]
Self-Feature Regularization(SFR) is proposed, which uses features in the deep layers to supervise feature learning in the shallow layers.
We firstly use generalization-l2 loss to match local features and a many-to-one approach to distill more intensively in the channel dimension.
arXiv Detail & Related papers (2021-03-12T15:29:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.