Safeguard Fine-Tuned LLMs Through Pre- and Post-Tuning Model Merging
- URL: http://arxiv.org/abs/2412.19512v1
- Date: Fri, 27 Dec 2024 08:03:22 GMT
- Title: Safeguard Fine-Tuned LLMs Through Pre- and Post-Tuning Model Merging
- Authors: Hua Farn, Hsuan Su, Shachi H Kumar, Saurav Sahay, Shang-Tse Chen, Hung-yi Lee,
- Abstract summary: Fine-tuning large language models (LLMs) for downstream tasks often leads to safety degradation in safety-aligned LLMs.<n>We propose a method that maintains the inherent safety of LLMs while enhancing their downstream task performance.
- Score: 43.44112117935541
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fine-tuning large language models (LLMs) for downstream tasks is a widely adopted approach, but it often leads to safety degradation in safety-aligned LLMs. Currently, many solutions address this issue by incorporating additional safety data, which can be impractical in many cases. In this paper, we address the question: How can we improve downstream task performance while preserving safety in LLMs without relying on additional safety data? We propose a simple and effective method that maintains the inherent safety of LLMs while enhancing their downstream task performance: merging the weights of pre- and post-fine-tuned safety-aligned models. Experimental results across various downstream tasks, models, and merging methods demonstrate that this approach effectively mitigates safety degradation while improving downstream task performance, offering a practical solution for adapting safety-aligned LLMs.
Related papers
- Layer-Aware Representation Filtering: Purifying Finetuning Data to Preserve LLM Safety Alignment [24.364891513019444]
In this paper, we show that fine-tuning datasets often contain samples with safety-degrading features that are not easily identifiable on the surface.<n>We propose LARF, a Layer-Aware Representation Filtering method.<n> Experimental results demonstrate that LARF can effectively identify benign data with safety-degrading features.
arXiv Detail & Related papers (2025-07-24T17:59:24Z) - Safe Pruning LoRA: Robust Distance-Guided Pruning for Safety Alignment in Adaptation of LLMs [4.580092836731863]
Fine-tuning Large Language Models (LLMs) with Low-Rank Adaptation (LoRA) enhances adaptability while reducing computational costs.<n>Existing safety alignment methods struggle to capture complex parameter shifts, leading to suboptimal safety-utility trade-offs.<n>We propose Safe Pruning LoRA (SPLoRA), a novel pruning-based approach that selectively removes LoRA layers that weaken safety alignment.
arXiv Detail & Related papers (2025-06-21T14:59:54Z) - LoX: Low-Rank Extrapolation Robustifies LLM Safety Against Fine-tuning [61.594212398272184]
Low-Rank Extrapolation (LoX) improves robustness against benign and malicious fine-tuning attacks.<n>LoX leads to 11% to 54% absolute reductions in attack success rates.
arXiv Detail & Related papers (2025-06-18T16:30:02Z) - Reshaping Representation Space to Balance the Safety and Over-rejection in Large Audio Language Models [50.89022445197919]
Large Audio Language Models (LALMs) have extended the capabilities of Large Language Models (LLMs)<n>Recent research has revealed that LALMs remain vulnerable to harmful queries due to insufficient safety-alignment.
arXiv Detail & Related papers (2025-05-26T08:25:25Z) - Mitigating Fine-tuning Risks in LLMs via Safety-Aware Probing Optimization [7.1060720569792215]
Fine-tuning large language models (LLMs) can inadvertently compromise their safety.<n>We introduce a safety-aware probing (SAP) framework designed to mitigate the safety risks.<n>Our experimental results demonstrate that SAP effectively reduces harmfulness below the original fine-tuned model.
arXiv Detail & Related papers (2025-05-22T14:52:10Z) - Do We Really Need Curated Malicious Data for Safety Alignment in Multi-modal Large Language Models? [83.53005932513155]
Multi-modal large language models (MLLMs) have made significant progress, yet their safety alignment remains limited.
We propose finetuning MLLMs on a small set of benign instruct-following data with responses replaced by simple, clear rejection sentences.
arXiv Detail & Related papers (2025-04-14T09:03:51Z) - SafeMERGE: Preserving Safety Alignment in Fine-Tuned Large Language Models via Selective Layer-Wise Model Merging [38.69546578029726]
We propose SafeMERGE, a post-fine-tuning framework that preserves safety while maintaining task utility.
We evaluate SafeMERGE against other fine-tuning- and post-fine-tuning-stage approaches for Llama-2-7B-Chat and Qwen-2-7B-Instruct models.
arXiv Detail & Related papers (2025-03-21T15:44:09Z) - Equilibrate RLHF: Towards Balancing Helpfulness-Safety Trade-off in Large Language Models [24.168387024091082]
Fine-tuning large language models (LLMs) based on human preferences has been effective in improving their performance.
Maintaining safety throughout the fine-tuning process remains a significant challenge.
We propose an Equilibrate RLHF framework that achieves better safety alignment even with fewer training data.
arXiv Detail & Related papers (2025-02-17T08:40:30Z) - Safety Layers in Aligned Large Language Models: The Key to LLM Security [43.805905164456846]
Internal parameters can be vulnerable to security degradation when fine-tuned with non-malicious backdoor or normal data.
We identify a small set of contiguous layers in the middle of the model that are crucial for distinguishing malicious queries from normal ones.
We propose a novel fine-tuning approach, Safely Partial Fine-Tuning (SPPFT), that fixes the gradient of the safety layers during fine-tuning to address the security degradation.
arXiv Detail & Related papers (2024-08-30T04:35:59Z) - SCANS: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
Safety alignment is indispensable for Large Language Models (LLMs) to defend threats from malicious instructions.
Recent researches reveal safety-aligned LLMs prone to reject benign queries due to the exaggerated safety issue.
We propose a Safety-Conscious Activation Steering (SCANS) method to mitigate the exaggerated safety concerns.
arXiv Detail & Related papers (2024-08-21T10:01:34Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
This study addresses a critical gap in safety tuning practices for Large Language Models (LLMs)
We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position.
DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful
arXiv Detail & Related papers (2024-07-12T09:36:33Z) - SLM as Guardian: Pioneering AI Safety with Small Language Models [6.799423428734095]
Internalizing safeguard features into larger models brought challenges of higher training cost and unintended degradation of helpfulness.
In this paper, we leverage a smaller LLM for both harmful query detection and safeguard response generation.
We demonstrate the effectiveness of our approach, providing on par or surpassing harmful query detection and safeguard response performance compared to the publicly available LLMs.
arXiv Detail & Related papers (2024-05-30T08:03:15Z) - Navigating the Safety Landscape: Measuring Risks in Finetuning Large Language Models [65.06446825020578]
Safety alignment is crucial to ensure that large language models (LLMs) behave in ways that align with human preferences and prevent harmful actions during inference.
We aim to measure the risks in finetuning LLMs through navigating the LLM safety landscape.
arXiv Detail & Related papers (2024-05-27T17:31:56Z) - Towards Comprehensive Post Safety Alignment of Large Language Models via Safety Patching [74.62818936088065]
textscSafePatching is a novel framework for comprehensive PSA.<n>textscSafePatching achieves a more comprehensive PSA than baseline methods.<n>textscSafePatching demonstrates its superiority in continual PSA scenarios.
arXiv Detail & Related papers (2024-05-22T16:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.