Optimizing Local-Global Dependencies for Accurate 3D Human Pose Estimation
- URL: http://arxiv.org/abs/2412.19676v1
- Date: Fri, 27 Dec 2024 14:54:12 GMT
- Title: Optimizing Local-Global Dependencies for Accurate 3D Human Pose Estimation
- Authors: Guangsheng Xu, Guoyi Zhang, Lejia Ye, Shuwei Gan, Xiaohu Zhang, Xia Yang,
- Abstract summary: We propose SSR-STF, a dual-stream model that integrates local features with global dependencies to enhance 3D human pose estimation.
Specifically, we introduce SSRFormer, a simple yet effective module that employs the skeleton selective refine attention (SSRA) mechanism to capture fine-grained local dependencies.
Experiments on the Human3.6M and MPI-INF-3DHP datasets demonstrate that SSR-STF achieves state-of-the-art performance, with P1 errors of 37.4 mm and 13.2 mm respectively.
- Score: 2.1330933342577096
- License:
- Abstract: Transformer-based methods have recently achieved significant success in 3D human pose estimation, owing to their strong ability to model long-range dependencies. However, relying solely on the global attention mechanism is insufficient for capturing the fine-grained local details, which are crucial for accurate pose estimation. To address this, we propose SSR-STF, a dual-stream model that effectively integrates local features with global dependencies to enhance 3D human pose estimation. Specifically, we introduce SSRFormer, a simple yet effective module that employs the skeleton selective refine attention (SSRA) mechanism to capture fine-grained local dependencies in human pose sequences, complementing the global dependencies modeled by the Transformer. By adaptively fusing these two feature streams, SSR-STF can better learn the underlying structure of human poses, overcoming the limitations of traditional methods in local feature extraction. Extensive experiments on the Human3.6M and MPI-INF-3DHP datasets demonstrate that SSR-STF achieves state-of-the-art performance, with P1 errors of 37.4 mm and 13.2 mm respectively, outperforming existing methods in both accuracy and generalization. Furthermore, the motion representations learned by our model prove effective in downstream tasks such as human mesh recovery. Codes are available at https://github.com/poker-xu/SSR-STF.
Related papers
- RopeTP: Global Human Motion Recovery via Integrating Robust Pose Estimation with Diffusion Trajectory Prior [10.093695199050071]
RopeTP is a novel framework that combines Robust pose estimation with a diffusion Trajectory Prior to reconstruct global human motion from videos.
RopeTP surpasses current methods on two benchmark datasets.
arXiv Detail & Related papers (2024-10-27T07:19:39Z) - Graph and Skipped Transformer: Exploiting Spatial and Temporal Modeling Capacities for Efficient 3D Human Pose Estimation [36.93661496405653]
We take a global approach to exploit Transformer-temporal information with a concise Graph and Skipped Transformer architecture.
Specifically, in 3D pose stage, coarse-grained body parts are deployed to construct a fully data-driven adaptive model.
Experiments are conducted on Human3.6M, MPI-INF-3DHP and Human-Eva benchmarks.
arXiv Detail & Related papers (2024-07-03T10:42:09Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with Pre-trained Vision-Language Models [59.13757801286343]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.
We introduce the FILP-3D framework with two novel components: the Redundant Feature Eliminator (RFE) for feature space misalignment and the Spatial Noise Compensator (SNC) for significant noise.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - Double-chain Constraints for 3D Human Pose Estimation in Images and
Videos [21.42410292863492]
Reconstructing 3D poses from 2D poses lacking depth information is challenging due to the complexity and diversity of human motion.
We propose a novel model, called Double-chain Graph Convolutional Transformer (DC-GCT), to constrain the pose.
We show that DC-GCT achieves state-of-the-art performance on two challenging datasets.
arXiv Detail & Related papers (2023-08-10T02:41:18Z) - Global Adaptation meets Local Generalization: Unsupervised Domain
Adaptation for 3D Human Pose Estimation [31.178656420040692]
textitPoseDA achieves 61.3 mm of MPJPE on MPI-INF-3DHP under a cross-dataset evaluation setup, improving upon the previous state-of-the-art method by 10.2%.
arXiv Detail & Related papers (2023-03-29T04:54:42Z) - Global-to-Local Modeling for Video-based 3D Human Pose and Shape
Estimation [53.04781510348416]
Video-based 3D human pose and shape estimations are evaluated by intra-frame accuracy and inter-frame smoothness.
We propose to structurally decouple the modeling of long-term and short-term correlations in an end-to-end framework, Global-to-Local Transformer (GLoT)
Our GLoT surpasses previous state-of-the-art methods with the lowest model parameters on popular benchmarks, i.e., 3DPW, MPI-INF-3DHP, and Human3.6M.
arXiv Detail & Related papers (2023-03-26T14:57:49Z) - Back to MLP: A Simple Baseline for Human Motion Prediction [59.18776744541904]
This paper tackles the problem of human motion prediction, consisting in forecasting future body poses from historically observed sequences.
We show that the performance of these approaches can be surpassed by a light-weight and purely architectural architecture with only 0.14M parameters.
An exhaustive evaluation on Human3.6M, AMASS and 3DPW datasets shows that our method, which we dub siMLPe, consistently outperforms all other approaches.
arXiv Detail & Related papers (2022-07-04T16:35:58Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - THUNDR: Transformer-based 3D HUmaN Reconstruction with Markers [67.8628917474705]
THUNDR is a transformer-based deep neural network methodology to reconstruct the 3d pose and shape of people.
We show state-of-the-art results on Human3.6M and 3DPW, for both the fully-supervised and the self-supervised models.
We observe very solid 3d reconstruction performance for difficult human poses collected in the wild.
arXiv Detail & Related papers (2021-06-17T09:09:24Z) - Locally Aware Piecewise Transformation Fields for 3D Human Mesh
Registration [67.69257782645789]
We propose piecewise transformation fields that learn 3D translation vectors to map any query point in posed space to its correspond position in rest-pose space.
We show that fitting parametric models with poses by our network results in much better registration quality, especially for extreme poses.
arXiv Detail & Related papers (2021-04-16T15:16:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.