Comparative Analysis of Listwise Reranking with Large Language Models in Limited-Resource Language Contexts
- URL: http://arxiv.org/abs/2412.20061v2
- Date: Wed, 15 Jan 2025 06:15:13 GMT
- Title: Comparative Analysis of Listwise Reranking with Large Language Models in Limited-Resource Language Contexts
- Authors: Yanxin Shen, Lun Wang, Chuanqi Shi, Shaoshuai Du, Yiyi Tao, Yixian Shen, Hang Zhang,
- Abstract summary: This study assesses the performance of large language models (LLMs) in listwise reranking for limited-resource African languages.<n>We compare proprietary models RankGPT3.5, Rank4o-mini, RankGPTo1-mini and RankClaude-sonnet in cross-lingual contexts.
- Score: 5.312946761836463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated significant effectiveness across various NLP tasks, including text ranking. This study assesses the performance of large language models (LLMs) in listwise reranking for limited-resource African languages. We compare proprietary models RankGPT3.5, Rank4o-mini, RankGPTo1-mini and RankClaude-sonnet in cross-lingual contexts. Results indicate that these LLMs significantly outperform traditional baseline methods such as BM25-DT in most evaluation metrics, particularly in nDCG@10 and MRR@100. These findings highlight the potential of LLMs in enhancing reranking tasks for low-resource languages and offer insights into cost-effective solutions.
Related papers
- Is LLM the Silver Bullet to Low-Resource Languages Machine Translation? [14.55410092719299]
Low-Resource Languages (LRLs) present significant challenges in natural language processing due to their limited linguistic resources and underrepresentation in standard datasets.
This paper systematically evaluates the limitations of current Large Language Models (LLMs) across 200 languages using benchmarks such as FLORES-200.
arXiv Detail & Related papers (2025-03-31T13:56:03Z) - Exploring the Multilingual NLG Evaluation Abilities of LLM-Based Evaluators [38.681443695708786]
This study provides a comprehensive analysis of the multilingual evaluation performance of 10 recent LLMs.
We found that excluding the reference answer from the prompt leads to better performance across various languages.
Most LLM-based evaluators show a higher correlation with human judgments in high-resource languages than in low-resource languages.
arXiv Detail & Related papers (2025-03-06T12:04:29Z) - Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
Large Language Models (LLMs) rely on large and diverse datasets to learn syntax, semantics, and usage patterns of programming languages.
For low-resource languages, the limited availability of such data hampers the models' ability to generalize effectively.
We present an empirical study investigating the effectiveness of several approaches for boosting LLMs' performance on low-resource languages.
arXiv Detail & Related papers (2025-01-31T12:23:28Z) - Challenges in Adapting Multilingual LLMs to Low-Resource Languages using LoRA PEFT Tuning [0.4194295877935868]
This study investigates the effects of Low-Rank Adaptation (LoRA) -Efficient Fine-Tuning (PEFT) on multilingual Gemma models for Marathi.<n>Using a translated dataset with 52,000 instruction-response pairs, our findings reveal that while evaluation performance decline post-fine-tuning, manual assessments frequently suggest that the fine-tuned models outperform their original counterparts.
arXiv Detail & Related papers (2024-11-27T18:14:38Z) - Language Ranker: A Metric for Quantifying LLM Performance Across High and Low-Resource Languages [48.40607157158246]
Large Language Models (LLMs) perform better on high-resource languages like English, German, and French, while their capabilities in low-resource languages remain inadequate.<n>We propose the Language Ranker, an intrinsic metric designed to benchmark and rank languages based on LLM performance using internal representations.<n>Our analysis reveals that high-resource languages exhibit higher similarity scores with English, demonstrating superior performance, while low-resource languages show lower similarity scores.
arXiv Detail & Related papers (2024-04-17T16:53:16Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
Large language models (LLMs) have been pre-trained on multilingual corpora.
Their performance still lags behind in most languages compared to a few resource-rich languages.
arXiv Detail & Related papers (2024-02-19T15:07:32Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
We investigate how large language models (LLMs) function as rerankers in cross-lingual information retrieval systems for African languages.
Our implementation covers English and four African languages (Hausa, Somali, Swahili, and Yoruba)
We examine cross-lingual reranking with queries in English and passages in the African languages.
arXiv Detail & Related papers (2023-12-26T18:38:54Z) - Are Large Language Model-based Evaluators the Solution to Scaling Up
Multilingual Evaluation? [20.476500441734427]
Large Language Models (LLMs) excel in various Natural Language Processing (NLP) tasks.
Their evaluation, particularly in languages beyond the top $20$, remains inadequate due to existing benchmarks and metrics limitations.
arXiv Detail & Related papers (2023-09-14T06:41:58Z) - ChatGPT MT: Competitive for High- (but not Low-) Resource Languages [62.178282377729566]
Large language models (LLMs) implicitly learn to perform a range of language tasks, including machine translation (MT)
We present the first experimental evidence for an expansive set of 204 languages, along with MT cost analysis.
Our analysis reveals that a language's resource level is the most important feature in determining ChatGPT's relative ability to translate it.
arXiv Detail & Related papers (2023-09-14T04:36:00Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
Large language models (LLMs) are known to effectively perform tasks by simply observing few exemplars.
We propose to assemble synthetic exemplars from a diverse set of high-resource languages to prompt the LLMs to translate from any language into English.
Our unsupervised prompting method performs on par with supervised few-shot learning in LLMs of different sizes for translations between English and 13 Indic and 21 African low-resource languages.
arXiv Detail & Related papers (2023-06-20T08:27:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.