Few-shot Algorithm Assurance
- URL: http://arxiv.org/abs/2412.20275v1
- Date: Sat, 28 Dec 2024 21:11:55 GMT
- Title: Few-shot Algorithm Assurance
- Authors: Dang Nguyen, Sunil Gupta,
- Abstract summary: deep learning models are vulnerable to image distortion.
Model Assurance under Image Distortion is a classification task.
We propose a novel Conditional Level Set Estimation algorithm.
- Score: 11.924406021826606
- License:
- Abstract: In image classification tasks, deep learning models are vulnerable to image distortion. For successful deployment, it is important to identify distortion levels under which the model is usable i.e. its accuracy stays above a stipulated threshold. We refer to this problem as Model Assurance under Image Distortion, and formulate it as a classification task. Given a distortion level, our goal is to predict if the model's accuracy on the set of distorted images is greater than a threshold. We propose a novel classifier based on a Level Set Estimation (LSE) algorithm, which uses the LSE's mean and variance functions to form the classification rule. We further extend our method to a "few sample" setting where we can only acquire few real images to perform the model assurance process. Our idea is to generate extra synthetic images using a novel Conditional Variational Autoencoder model with two new loss functions. We conduct extensive experiments to show that our classification method significantly outperforms strong baselines on five benchmark image datasets.
Related papers
- Predicting the Reliability of an Image Classifier under Image Distortion [48.866196348385]
In image classification tasks, deep learning models are vulnerable to image distortions.
For a quality control purpose, it is important to predict if the image-classifier is unreliable/reliable under a distortion level.
Our solution is to construct a training set consisting of distortion levels along with their "non-reliable" or "reliable" labels, and train a machine learning predictive model (called distortion-classifier) to classify unseen distortion levels.
arXiv Detail & Related papers (2024-12-22T06:21:06Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Diversified in-domain synthesis with efficient fine-tuning for few-shot
classification [64.86872227580866]
Few-shot image classification aims to learn an image classifier using only a small set of labeled examples per class.
We propose DISEF, a novel approach which addresses the generalization challenge in few-shot learning using synthetic data.
We validate our method in ten different benchmarks, consistently outperforming baselines and establishing a new state-of-the-art for few-shot classification.
arXiv Detail & Related papers (2023-12-05T17:18:09Z) - Benchmark Generation Framework with Customizable Distortions for Image
Classifier Robustness [4.339574774938128]
We present a novel framework for generating adversarial benchmarks to evaluate the robustness of image classification models.
Our framework allows users to customize the types of distortions to be optimally applied to images, which helps address the specific distortions relevant to their deployment.
arXiv Detail & Related papers (2023-10-28T07:40:42Z) - ARNIQA: Learning Distortion Manifold for Image Quality Assessment [28.773037051085318]
No-Reference Image Quality Assessment (NR-IQA) aims to develop methods to measure image quality in alignment with human perception without the need for a high-quality reference image.
We propose a self-supervised approach named ARNIQA for modeling the image distortion manifold to obtain quality representations in an intrinsic manner.
arXiv Detail & Related papers (2023-10-20T17:22:25Z) - Deep Learning-Based Defect Classification and Detection in SEM Images [1.9206693386750882]
In particular, we train RetinaNet models using different ResNet, VGGNet architectures as backbone.
We propose a preference-based ensemble strategy to combine the output predictions from different models in order to achieve better performance on classification and detection of defects.
arXiv Detail & Related papers (2022-06-20T16:34:11Z) - Ortho-Shot: Low Displacement Rank Regularization with Data Augmentation
for Few-Shot Learning [23.465747123791772]
In few-shot classification, the primary goal is to learn representations that generalize well for novel classes.
We propose an efficient low displacement rank (LDR) regularization strategy termed Ortho-Shot.
arXiv Detail & Related papers (2021-10-18T14:58:36Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - Salvage Reusable Samples from Noisy Data for Robust Learning [70.48919625304]
We propose a reusable sample selection and correction approach, termed as CRSSC, for coping with label noise in training deep FG models with web images.
Our key idea is to additionally identify and correct reusable samples, and then leverage them together with clean examples to update the networks.
arXiv Detail & Related papers (2020-08-06T02:07:21Z) - Set Based Stochastic Subsampling [85.5331107565578]
We propose a set-based two-stage end-to-end neural subsampling model that is jointly optimized with an textitarbitrary downstream task network.
We show that it outperforms the relevant baselines under low subsampling rates on a variety of tasks including image classification, image reconstruction, function reconstruction and few-shot classification.
arXiv Detail & Related papers (2020-06-25T07:36:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.