Contrastive Conditional Alignment based on Label Shift Calibration for Imbalanced Domain Adaptation
- URL: http://arxiv.org/abs/2412.20337v1
- Date: Sun, 29 Dec 2024 03:34:31 GMT
- Title: Contrastive Conditional Alignment based on Label Shift Calibration for Imbalanced Domain Adaptation
- Authors: Xiaona Sun, Zhenyu Wu, Zhiqiang Zhan, Yang Ji,
- Abstract summary: We propose contrastive conditional alignment based on label shift calibration (CCA-LSC) for unsupervised domain adaptation (UDA)
Our method outperforms existing UDA and IDA methods on benchmarks with both label shift and covariate shift.
- Score: 16.944918133828722
- License:
- Abstract: Many existing unsupervised domain adaptation (UDA) methods primarily focus on covariate shift, limiting their effectiveness in imbalanced domain adaptation (IDA) where both covariate shift and label shift coexist. Recent IDA methods have achieved promising results based on self-training using target pseudo labels. However, under the IDA scenarios, the classifier learned in the source domain will exhibit different decision bias from the target domain. It will potentially make target pseudo labels unreliable, and will further lead to error accumulation with incorrect class alignment. Thus, we propose contrastive conditional alignment based on label shift calibration (CCA-LSC) for IDA, to address both covariate shift and label shift. Initially, our contrastive conditional alignment resolve covariate shift to learn representations with domain invariance and class discriminability, which include domain adversarial learning, sample-weighted moving average centroid alignment and discriminative feature alignment. Subsequently, we estimate the probability distribution of the target domain, and calibrate target sample classification predictions based on label shift metrics to encourage labeling pseudo-labels more consistently with the distribution of real target data. Extensive experiments are conducted and demonstrate that our method outperforms existing UDA and IDA methods on benchmarks with both label shift and covariate shift. Our code is available at https://github.com/ysxcj-hub/CCA-LSC.
Related papers
- Ambiguity-Resistant Semi-Supervised Learning for Dense Object Detection [98.66771688028426]
We propose a Ambiguity-Resistant Semi-supervised Learning (ARSL) for one-stage detectors.
Joint-Confidence Estimation (JCE) is proposed to quantifies the classification and localization quality of pseudo labels.
ARSL effectively mitigates the ambiguities and achieves state-of-the-art SSOD performance on MS COCO and PASCAL VOC.
arXiv Detail & Related papers (2023-03-27T07:46:58Z) - Imbalanced Open Set Domain Adaptation via Moving-threshold Estimation
and Gradual Alignment [58.56087979262192]
Open Set Domain Adaptation (OSDA) aims to transfer knowledge from a well-labeled source domain to an unlabeled target domain.
The performance of OSDA methods degrades drastically under intra-domain class imbalance and inter-domain label shift.
We propose Open-set Moving-threshold Estimation and Gradual Alignment (OMEGA) to alleviate the negative effects raised by label shift.
arXiv Detail & Related papers (2023-03-08T05:55:02Z) - Adapting to Latent Subgroup Shifts via Concepts and Proxies [82.01141290360562]
We show that the optimal target predictor can be non-parametrically identified with the help of concept and proxy variables available only in the source domain.
For continuous observations, we propose a latent variable model specific to the data generation process at hand.
arXiv Detail & Related papers (2022-12-21T18:30:22Z) - Domain Adaptation under Open Set Label Shift [39.424134505152544]
We introduce the problem of domain adaptation under Open Set Label Shift (OSLS)
OSLS subsumes domain adaptation under label shift and Positive-Unlabeled (PU) learning.
We propose practical methods for both tasks that leverage black-box predictors.
arXiv Detail & Related papers (2022-07-26T17:09:48Z) - Cycle Label-Consistent Networks for Unsupervised Domain Adaptation [57.29464116557734]
Domain adaptation aims to leverage a labeled source domain to learn a classifier for the unlabeled target domain with a different distribution.
We propose a simple yet efficient domain adaptation method, i.e. Cycle Label-Consistent Network (CLCN), by exploiting the cycle consistency of classification label.
We demonstrate the effectiveness of our approach on MNIST-USPS-SVHN, Office-31, Office-Home and Image CLEF-DA benchmarks.
arXiv Detail & Related papers (2022-05-27T13:09:08Z) - Cross-Domain Gradient Discrepancy Minimization for Unsupervised Domain
Adaptation [22.852237073492894]
Unsupervised Domain Adaptation (UDA) aims to generalize the knowledge learned from a well-labeled source domain to an unlabeled target domain.
We propose a cross-domain discrepancy minimization (CGDM) method which explicitly minimizes the discrepancy of gradients generated by source samples and target samples.
In order to compute the gradient signal of target samples, we further obtain target pseudo labels through a clustering-based self-supervised learning.
arXiv Detail & Related papers (2021-06-08T07:35:40Z) - Cycle Self-Training for Domain Adaptation [85.14659717421533]
Cycle Self-Training (CST) is a principled self-training algorithm that enforces pseudo-labels to generalize across domains.
CST recovers target ground truth, while both invariant feature learning and vanilla self-training fail.
Empirical results indicate that CST significantly improves over prior state-of-the-arts in standard UDA benchmarks.
arXiv Detail & Related papers (2021-03-05T10:04:25Z) - Domain Adaptation with Auxiliary Target Domain-Oriented Classifier [115.39091109079622]
Domain adaptation aims to transfer knowledge from a label-rich but heterogeneous domain to a label-scare domain.
One of the most popular SSL techniques is pseudo-labeling that assigns pseudo labels for each unlabeled data.
We propose a new pseudo-labeling framework called Auxiliary Target Domain-Oriented (ATDOC)
ATDOC alleviates the bias by introducing an auxiliary classifier for target data only, to improve the quality of pseudo labels.
arXiv Detail & Related papers (2020-07-08T15:01:35Z) - Partially-Shared Variational Auto-encoders for Unsupervised Domain
Adaptation with Target Shift [11.873435088539459]
This paper proposes a novel approach for unsupervised domain adaptation (UDA) with target shift.
The proposed method, partially shared variational autoencoders (PS-VAEs), uses pair-wise feature alignment instead of feature distribution matching.
PS-VAEs inter-convert domain of each sample by a CycleGAN-based architecture while preserving its label-related content.
arXiv Detail & Related papers (2020-01-22T06:41:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.