Toward Scene Graph and Layout Guided Complex 3D Scene Generation
- URL: http://arxiv.org/abs/2412.20473v1
- Date: Sun, 29 Dec 2024 14:21:03 GMT
- Title: Toward Scene Graph and Layout Guided Complex 3D Scene Generation
- Authors: Yu-Hsiang Huang, Wei Wang, Sheng-Yu Huang, Yu-Chiang Frank Wang,
- Abstract summary: We present a novel framework of Scene Graph and Layout Guided 3D Scene Generation (GraLa3D)
Given a text prompt describing a complex 3D scene, GraLa3D utilizes LLM to model the scene using a scene graph representation with layout bounding box information.
GraLa3D uniquely constructs the scene graph with single-object nodes and composite super-nodes.
- Score: 31.396230860775415
- License:
- Abstract: Recent advancements in object-centric text-to-3D generation have shown impressive results. However, generating complex 3D scenes remains an open challenge due to the intricate relations between objects. Moreover, existing methods are largely based on score distillation sampling (SDS), which constrains the ability to manipulate multiobjects with specific interactions. Addressing these critical yet underexplored issues, we present a novel framework of Scene Graph and Layout Guided 3D Scene Generation (GraLa3D). Given a text prompt describing a complex 3D scene, GraLa3D utilizes LLM to model the scene using a scene graph representation with layout bounding box information. GraLa3D uniquely constructs the scene graph with single-object nodes and composite super-nodes. In addition to constraining 3D generation within the desirable layout, a major contribution lies in the modeling of interactions between objects in a super-node, while alleviating appearance leakage across objects within such nodes. Our experiments confirm that GraLa3D overcomes the above limitations and generates complex 3D scenes closely aligned with text prompts.
Related papers
- Disentangled 3D Scene Generation with Layout Learning [109.03233745767062]
We introduce a method to generate 3D scenes that are disentangled into their component objects.
Our key insight is that objects can be discovered by finding parts of a 3D scene that, when rearranged spatially, still produce valid configurations of the same scene.
We show that despite its simplicity, our approach successfully generates 3D scenes into individual objects.
arXiv Detail & Related papers (2024-02-26T18:54:15Z) - GALA3D: Towards Text-to-3D Complex Scene Generation via Layout-guided Generative Gaussian Splatting [52.150502668874495]
We present GALA3D, generative 3D GAussians with LAyout-guided control, for effective compositional text-to-3D generation.
GALA3D is a user-friendly, end-to-end framework for state-of-the-art scene-level 3D content generation and controllable editing.
arXiv Detail & Related papers (2024-02-11T13:40:08Z) - SceneWiz3D: Towards Text-guided 3D Scene Composition [134.71933134180782]
Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets.
We introduce SceneWiz3D, a novel approach to synthesize high-fidelity 3D scenes from text.
arXiv Detail & Related papers (2023-12-13T18:59:30Z) - TeMO: Towards Text-Driven 3D Stylization for Multi-Object Meshes [67.5351491691866]
We present a novel framework, dubbed TeMO, to parse multi-object 3D scenes and edit their styles.
Our method can synthesize high-quality stylized content and outperform the existing methods over a wide range of multi-object 3D meshes.
arXiv Detail & Related papers (2023-12-07T12:10:05Z) - GraphDreamer: Compositional 3D Scene Synthesis from Scene Graphs [74.98581417902201]
We propose a novel framework to generate compositional 3D scenes from scene graphs.
By exploiting node and edge information in scene graphs, our method makes better use of the pretrained text-to-image diffusion model.
We conduct both qualitative and quantitative experiments to validate the effectiveness of GraphDreamer.
arXiv Detail & Related papers (2023-11-30T18:59:58Z) - IPDreamer: Appearance-Controllable 3D Object Generation with Complex Image Prompts [90.49024750432139]
We present IPDreamer, a novel method that captures intricate appearance features from complex $textbfI$mage $textbfP$rompts and aligns the synthesized 3D object with these extracted features.
Our experiments demonstrate that IPDreamer consistently generates high-quality 3D objects that align with both the textual and complex image prompts.
arXiv Detail & Related papers (2023-10-09T03:11:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.