Bridging the Gap: A Decade Review of Time-Series Clustering Methods
- URL: http://arxiv.org/abs/2412.20582v1
- Date: Sun, 29 Dec 2024 21:04:35 GMT
- Title: Bridging the Gap: A Decade Review of Time-Series Clustering Methods
- Authors: John Paparrizos, Fan Yang, Haojun Li,
- Abstract summary: Time-series data presents significant challenges for analyzing latent structures over extended temporal scales.
Time-series clustering is an established unsupervised learning strategy that groups similar time series together.
This survey highlights key developments and provides insights to guide future research in time-series clustering.
- Score: 4.318028678596998
- License:
- Abstract: Time series, as one of the most fundamental representations of sequential data, has been extensively studied across diverse disciplines, including computer science, biology, geology, astronomy, and environmental sciences. The advent of advanced sensing, storage, and networking technologies has resulted in high-dimensional time-series data, however, posing significant challenges for analyzing latent structures over extended temporal scales. Time-series clustering, an established unsupervised learning strategy that groups similar time series together, helps unveil hidden patterns in these complex datasets. In this survey, we trace the evolution of time-series clustering methods from classical approaches to recent advances in neural networks. While previous surveys have focused on specific methodological categories, we bridge the gap between traditional clustering methods and emerging deep learning-based algorithms, presenting a comprehensive, unified taxonomy for this research area. This survey highlights key developments and provides insights to guide future research in time-series clustering.
Related papers
- A Survey on Deep Clustering: From the Prior Perspective [9.628838389364864]
This survey provides a comprehensive review of deep clustering methods by categorizing them into six types of prior knowledge.
We provide a benchmark on five widely-used datasets and analyze the performance of methods with diverse priors.
arXiv Detail & Related papers (2024-06-28T02:18:16Z) - Time Series Clustering With Random Convolutional Kernels [0.0]
Time series data, spanning applications ranging from climatology to finance to healthcare, presents significant challenges in data mining.
One open issue lies in time series clustering, which is crucial for processing large volumes of unlabeled time series data.
We introduce R-Clustering, a novel method that utilizes convolutional architectures with randomly selected parameters.
arXiv Detail & Related papers (2023-05-17T06:25:22Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
Clustering analysis plays an indispensable role in machine learning and data mining.
Deep clustering, which can learn clustering-friendly representations using deep neural networks, has been broadly applied in a wide range of clustering tasks.
Existing surveys for deep clustering mainly focus on the single-view fields and the network architectures, ignoring the complex application scenarios of clustering.
arXiv Detail & Related papers (2022-10-09T02:31:32Z) - A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and
Future Directions [48.97008907275482]
Clustering is a fundamental machine learning task which has been widely studied in the literature.
Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community.
We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering.
arXiv Detail & Related papers (2022-06-15T15:05:13Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - Time Series Analysis via Network Science: Concepts and Algorithms [62.997667081978825]
This review provides a comprehensive overview of existing mapping methods for transforming time series into networks.
We describe the main conceptual approaches, provide authoritative references and give insight into their advantages and limitations in a unified notation and language.
Although still very recent, this research area has much potential and with this survey we intend to pave the way for future research on the topic.
arXiv Detail & Related papers (2021-10-11T13:33:18Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
A community reveals the features and connections of its members that are different from those in other communities in a network.
This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods.
The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders.
arXiv Detail & Related papers (2021-05-26T14:37:07Z) - Deep learning for time series classification [2.0305676256390934]
Time series analysis allows us to visualize and understand the evolution of a process over time.
Time series classification consists of constructing algorithms dedicated to automatically label time series data.
Deep learning has emerged as one of the most effective methods for tackling the supervised classification task.
arXiv Detail & Related papers (2020-10-01T17:38:40Z) - Deep Learning for Community Detection: Progress, Challenges and
Opportunities [79.26787486888549]
Article summarizes the contributions of the various frameworks, models, and algorithms in deep neural networks.
This article summarizes the contributions of the various frameworks, models, and algorithms in deep neural networks.
arXiv Detail & Related papers (2020-05-17T11:22:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.