GliLem: Leveraging GliNER for Contextualized Lemmatization in Estonian
- URL: http://arxiv.org/abs/2412.20597v3
- Date: Sat, 11 Jan 2025 13:49:03 GMT
- Title: GliLem: Leveraging GliNER for Contextualized Lemmatization in Estonian
- Authors: Aleksei Dorkin, Kairit Sirts,
- Abstract summary: We present GliLem, a novel hybrid lemmatization system for Estonian.
We leverage the flexibility of a pre-trained GliNER model to improve the lemmatization accuracy of Vabamorf.
- Score: 0.21485350418225246
- License:
- Abstract: We present GliLem -- a novel hybrid lemmatization system for Estonian that enhances the highly accurate rule-based morphological analyzer Vabamorf with an external disambiguation module based on GliNER -- an open vocabulary NER model that is able to match text spans with text labels in natural language. We leverage the flexibility of a pre-trained GliNER model to improve the lemmatization accuracy of Vabamorf by 10% compared to its original disambiguation module and achieve an improvement over the token classification-based baseline. To measure the impact of improvements in lemmatization accuracy on the information retrieval downstream task, we first created an information retrieval dataset for Estonian by automatically translating the DBpedia-Entity dataset from English. We benchmark several token normalization approaches, including lemmatization, on the created dataset using the BM25 algorithm. We observe a substantial improvement in IR metrics when using lemmatization over simplistic stemming. The benefits of improving lemma disambiguation accuracy manifest in small but consistent improvement in the IR recall measure, especially in the setting of high k.
Related papers
- Refining Sentence Embedding Model through Ranking Sentences Generation with Large Language Models [60.00178316095646]
Sentence embedding is essential for many NLP tasks, with contrastive learning methods achieving strong performance using datasets like NLI.
Recent studies leverage large language models (LLMs) to generate sentence pairs, reducing annotation dependency.
We propose a method for controlling the generation direction of LLMs in the latent space. Unlike unconstrained generation, the controlled approach ensures meaningful semantic divergence.
Experiments on multiple benchmarks demonstrate that our method achieves new SOTA performance with a modest cost in ranking sentence synthesis.
arXiv Detail & Related papers (2025-02-19T12:07:53Z) - CLAIM Your Data: Enhancing Imputation Accuracy with Contextual Large Language Models [0.18416014644193068]
This paper introduces the Contextual Language model for Accurate Imputation Method (CLAIM)
Unlike traditional imputation methods, CLAIM utilizes contextually relevant natural language descriptors to fill missing values.
Our evaluations across diverse datasets and missingness patterns reveal CLAIM's superior performance over existing imputation techniques.
arXiv Detail & Related papers (2024-05-28T00:08:29Z) - RegaVAE: A Retrieval-Augmented Gaussian Mixture Variational Auto-Encoder
for Language Modeling [79.56442336234221]
We introduce RegaVAE, a retrieval-augmented language model built upon the variational auto-encoder (VAE)
It encodes the text corpus into a latent space, capturing current and future information from both source and target text.
Experimental results on various datasets demonstrate significant improvements in text generation quality and hallucination removal.
arXiv Detail & Related papers (2023-10-16T16:42:01Z) - Non-parametric, Nearest-neighbor-assisted Fine-tuning for Neural Machine
Translation [22.59222643493867]
Non-parametric, k-nearest-neighbor algorithms have recently made inroads to assist generative models such as language models and machine translation decoders.
We explore whether such non-parametric models can improve machine translation models at the fine-tuning stage by incorporating statistics from the kNN predictions.
arXiv Detail & Related papers (2023-05-23T03:44:06Z) - Robust Acoustic and Semantic Contextual Biasing in Neural Transducers
for Speech Recognition [14.744220870243932]
We propose to use lightweight character representations to encode fine-grained pronunciation features to improve contextual biasing.
We further integrate pretrained neural language model (NLM) based encoders to encode the utterance's semantic context.
Experiments using a Conformer Transducer model on the Librispeech dataset show a 4.62% - 9.26% relative WER improvement on different biasing list sizes.
arXiv Detail & Related papers (2023-05-09T08:51:44Z) - Towards preserving word order importance through Forced Invalidation [80.33036864442182]
We show that pre-trained language models are insensitive to word order.
We propose Forced Invalidation to help preserve the importance of word order.
Our experiments demonstrate that Forced Invalidation significantly improves the sensitivity of the models to word order.
arXiv Detail & Related papers (2023-04-11T13:42:10Z) - Non-Parametric Domain Adaptation for End-to-End Speech Translation [72.37869362559212]
End-to-End Speech Translation (E2E-ST) has received increasing attention due to the potential of its less error propagation, lower latency, and fewer parameters.
We propose a novel non-parametric method that leverages domain-specific text translation corpus to achieve domain adaptation for the E2E-ST system.
arXiv Detail & Related papers (2022-05-23T11:41:02Z) - DEEP: DEnoising Entity Pre-training for Neural Machine Translation [123.6686940355937]
It has been shown that machine translation models usually generate poor translations for named entities that are infrequent in the training corpus.
We propose DEEP, a DEnoising Entity Pre-training method that leverages large amounts of monolingual data and a knowledge base to improve named entity translation accuracy within sentences.
arXiv Detail & Related papers (2021-11-14T17:28:09Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z) - Hybrid Attention-Based Transformer Block Model for Distant Supervision
Relation Extraction [20.644215991166902]
We propose a new framework using hybrid attention-based Transformer block with multi-instance learning to perform the DSRE task.
The proposed approach can outperform the state-of-the-art algorithms on the evaluation dataset.
arXiv Detail & Related papers (2020-03-10T13:05:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.