Fine-Tuning TransMorph with Gradient Correlation for Anatomical Alignment
- URL: http://arxiv.org/abs/2412.20822v1
- Date: Mon, 30 Dec 2024 09:32:04 GMT
- Title: Fine-Tuning TransMorph with Gradient Correlation for Anatomical Alignment
- Authors: Lukas Förner, Kartikay Tehlan, Thomas Wendler,
- Abstract summary: Unsupervised deep learning is a promising method in brain MRI registration to reduce the reliance on anatomical labels.
For the Learn2Reg2024 LUMIR challenge, we propose fine-tuning of the pre-trained TransMorph model to improve convergence stability as well as the deformation.
- Score: 0.6359529834975265
- License:
- Abstract: Unsupervised deep learning is a promising method in brain MRI registration to reduce the reliance on anatomical labels, while still achieving anatomically accurate transformations. For the Learn2Reg2024 LUMIR challenge, we propose fine-tuning of the pre-trained TransMorph model to improve the convergence stability as well as the deformation smoothness. The former is achieved through the FAdam optimizer, and consistency in structural changes is incorporated through the addition of gradient correlation in the similarity measure, improving anatomical alignment. The results show slight improvements in the Dice and HdDist95 scores, and a notable reduction in the NDV compared to the baseline TransMorph model. These are also confirmed by inspecting the boundaries of the tissue. Our proposed method highlights the effectiveness of including Gradient Correlation to achieve smoother and structurally consistent deformations for interpatient brain MRI registration.
Related papers
- Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs [35.46541584018842]
Unsupervised Anomaly Detection (UAD) aims to identify any anomaly as an outlier from a healthy training distribution.
generative models are used to learn the reconstruction of healthy brain anatomy for a given input image.
We propose conditioning the denoising process of diffusion models with additional information derived from a latent representation of the input image.
arXiv Detail & Related papers (2023-12-07T11:03:42Z) - AC-Norm: Effective Tuning for Medical Image Analysis via Affine
Collaborative Normalization [11.224435413938375]
Affine Collaborative Normalization (AC-Norm) is proposed for finetuning.
AC-Norm dynamically recalibrates the channels in the target model according to the cross-domain channel-wise correlations.
We demonstrate that AC-Norm unanimously outperforms the vanilla finetuning by up to 4% improvement.
arXiv Detail & Related papers (2023-07-28T03:27:25Z) - GSMorph: Gradient Surgery for cine-MRI Cardiac Deformable Registration [62.41725951450803]
Learning-based deformable registration relies on weighted objective functions trading off registration accuracy and smoothness of the field.
We construct a registration model based on the gradient surgery mechanism, named GSMorph, to achieve a hyper parameter-free balance on multiple losses.
Our method is model-agnostic and can be merged into any deep registration network without introducing extra parameters or slowing down inference.
arXiv Detail & Related papers (2023-06-26T13:32:09Z) - CDIDN: A Registration Model with High Deformation Impedance Capability
for Long-Term Tracking of Pulmonary Lesion Dynamics [9.253798333911341]
We study the problem of registration for medical CT images from a novel perspective.
We propose a novel registration model called Cascade-Dilation Inter-Layer Differential Network (CDIDN)
It exhibits both high deformation capability (DIC) and accuracy.
arXiv Detail & Related papers (2023-05-18T15:05:55Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - 3D Inception-Based TransMorph: Pre- and Post-operative Multi-contrast
MRI Registration in Brain Tumors [1.2234742322758418]
We propose a two-stage cascaded network based on the Inception and TransMorph models.
Loss function was composed of a standard image similarity measure, a diffusion regularizer, and an edge-map similarity measure added to overcome intensity dependence.
We achieved 6th place at the time of model submission in the final testing phase of the BraTS-Reg challenge.
arXiv Detail & Related papers (2022-12-08T22:00:07Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
We propose a weakly-supervised deep learning framework that preserves the rigidity and the volume of each vertebra while maximizing the accuracy of the registration.
We specifically design these losses to depend only on the CT label maps since automatic vertebra segmentation in CT gives more accurate results contrary to MRI.
Our results show that adding the anatomy-aware losses increases the plausibility of the inferred transformation while keeping the accuracy untouched.
arXiv Detail & Related papers (2022-05-16T10:59:55Z) - Symmetry-Enhanced Attention Network for Acute Ischemic Infarct
Segmentation with Non-Contrast CT Images [50.55978219682419]
We propose a symmetry enhanced attention network (SEAN) for acute ischemic infarct segmentation.
Our proposed network automatically transforms an input CT image into the standard space where the brain tissue is bilaterally symmetric.
The proposed SEAN outperforms some symmetry-based state-of-the-art methods in terms of both dice coefficient and infarct localization.
arXiv Detail & Related papers (2021-10-11T07:13:26Z) - Learning Multi-Modal Volumetric Prostate Registration with Weak
Inter-Subject Spatial Correspondence [2.6894568533991543]
We introduce an auxiliary input to the neural network for the prior information about the prostate location in the MR sequence.
With weakly labelled MR-TRUS prostate data, we showed registration quality comparable to the state-of-the-art deep learning-based method.
arXiv Detail & Related papers (2021-02-09T16:48:59Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.