Language-based Audio Retrieval with Co-Attention Networks
- URL: http://arxiv.org/abs/2412.20914v1
- Date: Mon, 30 Dec 2024 12:49:55 GMT
- Title: Language-based Audio Retrieval with Co-Attention Networks
- Authors: Haoran Sun, Zimu Wang, Qiuyi Chen, Jianjun Chen, Jia Wang, Haiyang Zhang,
- Abstract summary: We introduce a novel framework for the language-based audio retrieval task.
We propose a cascaded co-attention architecture, where co-attention modules are stacked or iterated to refine the semantic alignment between text and audio.
Experiments conducted on two public datasets show that the proposed method can achieve better performance than the state-of-the-art method.
- Score: 22.155383794829977
- License:
- Abstract: In recent years, user-generated audio content has proliferated across various media platforms, creating a growing need for efficient retrieval methods that allow users to search for audio clips using natural language queries. This task, known as language-based audio retrieval, presents significant challenges due to the complexity of learning semantic representations from heterogeneous data across both text and audio modalities. In this work, we introduce a novel framework for the language-based audio retrieval task that leverages co-attention mechanismto jointly learn meaningful representations from both modalities. To enhance the model's ability to capture fine-grained cross-modal interactions, we propose a cascaded co-attention architecture, where co-attention modules are stacked or iterated to progressively refine the semantic alignment between text and audio. Experiments conducted on two public datasets show that the proposed method can achieve better performance than the state-of-the-art method. Specifically, our best performed co-attention model achieves a 16.6% improvement in mean Average Precision on Clotho dataset, and a 15.1% improvement on AudioCaps.
Related papers
- AudioSetMix: Enhancing Audio-Language Datasets with LLM-Assisted Augmentations [1.2101820447447276]
Multi-modal learning in the audio-language domain has seen significant advancements in recent years.
However, audio-language learning faces challenges due to limited and lower-quality data compared to image-language tasks.
Our method systematically generates audio-caption pairs by augmenting audio clips with natural language labels and corresponding audio signal processing operations.
This scalable method produces AudioSetMix, a high-quality training dataset for text-and-audio related models.
arXiv Detail & Related papers (2024-05-17T21:08:58Z) - Multilingual Audio-Visual Speech Recognition with Hybrid CTC/RNN-T Fast Conformer [59.57249127943914]
We present a multilingual Audio-Visual Speech Recognition model incorporating several enhancements to improve performance and audio noise robustness.
We increase the amount of audio-visual training data for six distinct languages, generating automatic transcriptions of unlabelled multilingual datasets.
Our proposed model achieves new state-of-the-art performance on the LRS3 dataset, reaching WER of 0.8%.
arXiv Detail & Related papers (2024-03-14T01:16:32Z) - Audio-Visual Speaker Verification via Joint Cross-Attention [4.229744884478575]
Cross-modal joint attention to fully leverage the inter-modal complementary information and the intra-modal information for speaker verification.
We have shown that efficiently leveraging the intra- and inter-modal relationships significantly improves the performance of audio-visual fusion for speaker verification.
arXiv Detail & Related papers (2023-09-28T16:25:29Z) - Auto-ACD: A Large-scale Dataset for Audio-Language Representation Learning [50.28566759231076]
We propose an innovative, automatic approach to establish an audio dataset with high-quality captions.
Specifically, we construct a large-scale, high-quality, audio-language dataset, named as Auto-ACD, comprising over 1.5M audio-text pairs.
We employ LLM to paraphrase a congruent caption for each audio, guided by the extracted multi-modality clues.
arXiv Detail & Related papers (2023-09-20T17:59:32Z) - Parameter Efficient Audio Captioning With Faithful Guidance Using
Audio-text Shared Latent Representation [0.9285295512807729]
We propose a data augmentation technique for generating hallucinated audio captions and show that similarity based on an audio-text shared latent space is suitable for detecting hallucination.
We then propose a parameter efficient inference time faithful decoding algorithm that enables smaller audio captioning models with performance equivalent to larger models trained with more data.
arXiv Detail & Related papers (2023-09-06T19:42:52Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
We propose two novel techniques to improve audio-visual speech recognition (AVSR) under a pre-training and fine-tuning training framework.
First, we explore the correlation between lip shapes and syllable-level subword units in Mandarin to establish good frame-level syllable boundaries from lip shapes.
Next, we propose an audio-guided cross-modal fusion encoder (CMFE) neural network to utilize main training parameters for multiple cross-modal attention layers.
arXiv Detail & Related papers (2023-08-14T08:19:24Z) - Cross-modal Audio-visual Co-learning for Text-independent Speaker
Verification [55.624946113550195]
This paper proposes a cross-modal speech co-learning paradigm.
Two cross-modal boosters are introduced based on an audio-visual pseudo-siamese structure to learn the modality-transformed correlation.
Experimental results on the LRSLip3, GridLip, LomGridLip, and VoxLip datasets demonstrate that our proposed method achieves 60% and 20% average relative performance improvement.
arXiv Detail & Related papers (2023-02-22T10:06:37Z) - Audio-text Retrieval in Context [24.38055340045366]
In this work, we investigate several audio features as well as sequence aggregation methods for better audio-text alignment.
We build our contextual audio-text retrieval system using pre-trained audio features and a descriptor-based aggregation method.
With our proposed system, a significant improvement has been achieved on bidirectional audio-text retrieval, on all metrics including recall, median and mean rank.
arXiv Detail & Related papers (2022-03-25T13:41:17Z) - CTAL: Pre-training Cross-modal Transformer for Audio-and-Language
Representations [20.239063010740853]
We present a Cross-modal Transformer for Audio-and-Language, i.e., CTAL, which aims to learn the intra-modality and inter-modality connections between audio and language.
We observe significant improvements across various tasks, such as, emotion classification, sentiment analysis, and speaker verification.
arXiv Detail & Related papers (2021-09-01T04:18:19Z) - Seeing wake words: Audio-visual Keyword Spotting [103.12655603634337]
KWS-Net is a novel convolutional architecture that uses a similarity map intermediate representation to separate the task into sequence matching and pattern detection.
We show that our method generalises to other languages, specifically French and German, and achieves a comparable performance to English with less language specific data.
arXiv Detail & Related papers (2020-09-02T17:57:38Z) - Unsupervised Cross-Modal Audio Representation Learning from Unstructured
Multilingual Text [69.55642178336953]
We present an approach to unsupervised audio representation learning.
Based on a triplet neural network architecture, we harnesses semantically related cross-modal information to estimate audio track-relatedness.
We show that our approach is invariant to the variety of annotation styles as well as to the different languages of this collection.
arXiv Detail & Related papers (2020-03-27T07:37:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.