Machine Learning-Based Security Policy Analysis
- URL: http://arxiv.org/abs/2501.00085v2
- Date: Mon, 06 Jan 2025 22:42:41 GMT
- Title: Machine Learning-Based Security Policy Analysis
- Authors: Krish Jain, Joann Sum, Pranav Kapoor, Amir Eaman,
- Abstract summary: Security-Enhanced Linux (SE Linux) is a robust security mechanism that enforces mandatory access controls (MAC)
This research investigates the automation of SE Linux policy analysis using graph-based techniques combined with machine learning approaches to detect policy anomalies.
- Score: 0.0
- License:
- Abstract: Security-Enhanced Linux (SELinux) is a robust security mechanism that enforces mandatory access controls (MAC), but its policy language's complexity creates challenges for policy analysis and management. This research investigates the automation of SELinux policy analysis using graph-based techniques combined with machine learning approaches to detect policy anomalies. The study addresses two key questions: Can SELinux policy analysis be automated through graph analysis, and how do different anomaly detection models compare in analyzing SELinux policies? We will be comparing different machine learning models by evaluating their effectiveness in detecting policy violations and anomalies. Our approach utilizes Neo4j for graph representation of policies, with Node2vec transforming these graph structures into meaningful vector embeddings that can be processed by our machine learning models. In our results, the MLP Neural Network consistently demonstrated superior performance across different dataset sizes, achieving 95% accuracy with balanced precision and recall metrics, while both Random Forest and SVM models showed competitive but slightly lower performance in detecting policy violations. This combination of graph-based modeling and machine learning provides a more sophisticated and automated approach to understanding and analyzing complex SELinux policies compared to traditional manual analysis methods.
Related papers
- Unpacking Failure Modes of Generative Policies: Runtime Monitoring of Consistency and Progress [31.952925824381325]
We propose a runtime monitoring framework that splits the detection of failures into two complementary categories.
We use Vision Language Models (VLMs) to detect when the policy confidently and consistently takes actions that do not solve the task.
By unifying temporal consistency detection and VLM runtime monitoring, Sentinel detects 18% more failures than using either of the two detectors alone.
arXiv Detail & Related papers (2024-10-06T22:13:30Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
This paper compares four state-of-the-art algorithms in two real applications: gesture recognition based on accelerometer data and image classification.
Our results confirm these systems' reliability and the feasibility of deploying them in tiny-memory MCUs.
arXiv Detail & Related papers (2022-09-01T17:05:20Z) - Panning for gold: Lessons learned from the platform-agnostic automated
detection of political content in textual data [48.7576911714538]
We discuss how these techniques can be used to detect political content across different platforms.
We compare the performance of three groups of detection techniques relying on dictionaries, supervised machine learning, or neural networks.
Our results show the limited impact of preprocessing on model performance, with the best results for less noisy data being achieved by neural network- and machine-learning-based models.
arXiv Detail & Related papers (2022-07-01T15:23:23Z) - Support Vector Machines under Adversarial Label Contamination [13.299257835329868]
We evaluate the security of Support Vector Machines (SVMs) to well-crafted, adversarial label noise attacks.
In particular, we consider an attacker that aims to formalize the SVM's classification error by flipping a number of labels.
We argue that our approach can also provide useful insights for developing more secure SVM learning algorithms.
arXiv Detail & Related papers (2022-06-01T09:38:07Z) - A System for Interactive Examination of Learned Security Policies [0.0]
We present a system for interactive examination of learned security policies.
It allows a user to traverse episodes of Markov decision processes in a controlled manner.
arXiv Detail & Related papers (2022-04-03T17:55:32Z) - Automated Graph Machine Learning: Approaches, Libraries, Benchmarks and Directions [58.220137936626315]
This paper extensively discusses automated graph machine learning approaches.
We introduce AutoGL, our dedicated and the world's first open-source library for automated graph machine learning.
Also, we describe a tailored benchmark that supports unified, reproducible, and efficient evaluations.
arXiv Detail & Related papers (2022-01-04T18:31:31Z) - Learn then Test: Calibrating Predictive Algorithms to Achieve Risk
Control [67.52000805944924]
Learn then Test (LTT) is a framework for calibrating machine learning models.
Our main insight is to reframe the risk-control problem as multiple hypothesis testing.
We use our framework to provide new calibration methods for several core machine learning tasks with detailed worked examples in computer vision.
arXiv Detail & Related papers (2021-10-03T17:42:03Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
This work explores a deep learning approach to automatically learn the insecure patterns from code corpora.
Because code naturally admits graph structures with parsing, we develop a novel graph neural network (GNN) to exploit both the semantic context and structural regularity of a program.
arXiv Detail & Related papers (2021-09-07T21:24:36Z) - Statistical learning for change point and anomaly detection in graphs [0.32228025627337864]
We discuss the possibility of bringing together statistical process control and deep learning algorithms.
We propose to monitor the response times of ambulance services, applying jointly the control chart for quantile function values and a graph convolutional network.
arXiv Detail & Related papers (2020-11-10T17:15:53Z) - Adversarial Machine Learning in Network Intrusion Detection Systems [6.18778092044887]
We study the nature of the adversarial problem in Network Intrusion Detection Systems.
We use evolutionary computation (particle swarm optimization and genetic algorithm) and deep learning (generative adversarial networks) as tools for adversarial example generation.
Our work highlights the vulnerability of machine learning based NIDS in the face of adversarial perturbation.
arXiv Detail & Related papers (2020-04-23T19:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.