Class-based Subset Selection for Transfer Learning under Extreme Label Shift
- URL: http://arxiv.org/abs/2501.00162v1
- Date: Mon, 30 Dec 2024 22:14:24 GMT
- Title: Class-based Subset Selection for Transfer Learning under Extreme Label Shift
- Authors: Akul Goyal, Carl Edwards,
- Abstract summary: This paper proposes a new process for few-shot transfer learning that selects and weighs classes from the source domain to optimize the transfer between domains.
More concretely, we use Wasserstein distance to choose a set of source classes and their weights that minimize the distance between the source and target domain.
- Score: 1.4529850226400594
- License:
- Abstract: Existing work within transfer learning often follows a two-step process -- pre-training over a large-scale source domain and then finetuning over limited samples from the target domain. Yet, despite its popularity, this methodology has been shown to suffer in the presence of distributional shift -- specifically when the output spaces diverge. Previous work has focused on increasing model performance within this setting by identifying and classifying only the shared output classes between distributions. However, these methods are inherently limited as they ignore classes outside the shared class set, disregarding potential information relevant to the model transfer. This paper proposes a new process for few-shot transfer learning that selects and weighs classes from the source domain to optimize the transfer between domains. More concretely, we use Wasserstein distance to choose a set of source classes and their weights that minimize the distance between the source and target domain. To justify our proposed algorithm, we provide a generalization analysis of the performance of the learned classifier over the target domain and show that our method corresponds to a bound minimization algorithm. We empirically demonstrate the effectiveness of our approach (WaSS) by experimenting on several different datasets and presenting superior performance within various label shift settings, including the extreme case where the label spaces are disjoint.
Related papers
- Self-training through Classifier Disagreement for Cross-Domain Opinion
Target Extraction [62.41511766918932]
Opinion target extraction (OTE) or aspect extraction (AE) is a fundamental task in opinion mining.
Recent work focus on cross-domain OTE, which is typically encountered in real-world scenarios.
We propose a new SSL approach that opts for selecting target samples whose model output from a domain-specific teacher and student network disagrees on the unlabelled target data.
arXiv Detail & Related papers (2023-02-28T16:31:17Z) - Label Distribution Learning for Generalizable Multi-source Person
Re-identification [48.77206888171507]
Person re-identification (Re-ID) is a critical technique in the video surveillance system.
It is difficult to directly apply the supervised model to arbitrary unseen domains.
We propose a novel label distribution learning (LDL) method to address the generalizable multi-source person Re-ID task.
arXiv Detail & Related papers (2022-04-12T15:59:10Z) - From Big to Small: Adaptive Learning to Partial-Set Domains [94.92635970450578]
Domain adaptation targets at knowledge acquisition and dissemination from a labeled source domain to an unlabeled target domain under distribution shift.
Recent advances show that deep pre-trained models of large scale endow rich knowledge to tackle diverse downstream tasks of small scale.
This paper introduces Partial Domain Adaptation (PDA), a learning paradigm that relaxes the identical class space assumption to that the source class space subsumes the target class space.
arXiv Detail & Related papers (2022-03-14T07:02:45Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Your Classifier can Secretly Suffice Multi-Source Domain Adaptation [72.47706604261992]
Multi-Source Domain Adaptation (MSDA) deals with the transfer of task knowledge from multiple labeled source domains to an unlabeled target domain.
We present a different perspective to MSDA wherein deep models are observed to implicitly align the domains under label supervision.
arXiv Detail & Related papers (2021-03-20T12:44:13Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
Partial domain adaptation aims to adapt knowledge from a larger and more diverse source domain to a smaller target domain with less number of classes.
Recent practice on domain adaptation manages to extract effective features by incorporating the pseudo labels for the target domain.
It is essential to align target data with only a small set of source data.
arXiv Detail & Related papers (2020-08-26T03:18:53Z) - Class Conditional Alignment for Partial Domain Adaptation [10.506584969668792]
Adrial adaptation models have demonstrated significant progress towards transferring knowledge from a labeled source dataset to an unlabeled target dataset.
PDA investigates the scenarios in which the source domain is large and diverse, and the target label space is a subset of the source label space.
We propose a multi-class adversarial architecture for PDA.
arXiv Detail & Related papers (2020-03-14T23:51:57Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions.
We develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification.
arXiv Detail & Related papers (2020-03-04T23:25:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.