Optimal Control in Nearly-Adiabatic Two-Level Quantum Systems via Time-Dependent Resonance
- URL: http://arxiv.org/abs/2501.00293v1
- Date: Tue, 31 Dec 2024 06:06:21 GMT
- Title: Optimal Control in Nearly-Adiabatic Two-Level Quantum Systems via Time-Dependent Resonance
- Authors: Takayuki Suzuki,
- Abstract summary: We show that a protocol based on time-dependent resonance" in nearly adiabatic two-level quantum systems exhibits properties equivalent to adiabatic control.
Our findings provide a new perspective on quantum optimal control theory and suggest potential applications in qubit controls and quantum information processing.
- Score: 0.348097307252416
- License:
- Abstract: In this study, we theoretically analyzed a control protocol based on ``time-dependent resonance" in nearly adiabatic two-level quantum systems, demonstrating that it exhibits properties equivalent to adiabatic control. This protocol is based on ``time-dependent resonance", where the frequency corresponds to the time-dependent energy gap. Through numerical calculations, we showed that this protocol serves as an optimal control protocol. This approach enables efficient and high-precision transitions to the target state. Our findings provide a new perspective on quantum optimal control theory and suggest potential applications in qubit controls and quantum information processing.
Related papers
- Quantum optimal control of superconducting qubits based on machine-learning characterization [39.58317527488534]
We propose an experimentally simple approach to realize optimal quantum controls tailored to the device parameters and environment.
We use physics-inspired machine learning to infer an accurate model of the dynamics from experimentally available data.
We show the power and feasibility of this approach by optimizing arbitrary single-qubit operations on a superconducting transmon qubit.
arXiv Detail & Related papers (2024-10-29T23:54:25Z) - Shortcuts to adiabaticity in harmonic traps: a quantum-classical analog [0.10713888959520208]
We present a new technique for efficiently transitioning a quantum system from an initial to a final stationary state.
Our approach makes use of Nelson's quantization, which represents the quantum system as a classical Brownian process.
arXiv Detail & Related papers (2024-05-03T09:19:24Z) - Optimal control in large open quantum systems: the case of transmon readout and reset [44.99833362998488]
We present a framework that combines the adjoint-state method together with reverse-time backpropagation to solve prohibitively large open-system quantum control problems.
We apply this framework to optimize two inherently dissipative operations in superconducting qubits.
Our results show that while standard pulses for dispersive readout are nearly optimal, adding a transmon drive during the protocol can yield 2x improvements in fidelity and duration.
arXiv Detail & Related papers (2024-03-21T18:12:51Z) - Robust Quantum Control via a Model Predictive Control Strategy [4.197316670989004]
This article presents a robust control strategy for a two-level quantum system subject to bounded uncertainties.
We present theoretical results to guarantee the stability of the TOMPC algorithm.
Numerical simulations demonstrate that, in the presence of uncertainties, our quantum TOMPC algorithm enhances the robustness and steers the state to the desired state with high fidelity.
arXiv Detail & Related papers (2024-02-12T04:05:54Z) - Time-optimal state transfer for an open qubit [0.0]
Finding minimal time and establishing the structure of the corresponding optimal controls is a key problem of quantum control.
We rigorously derive both upper and lower estimates for the minimal steering time.
An important for practical applications explicit almost optimal state transfer protocol is provided.
arXiv Detail & Related papers (2024-01-18T16:06:57Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Robust optimization for quantum reinforcement learning control using
partial observations [10.975734427172231]
Full observation of quantum state is experimentally infeasible due to the exponential scaling of the number of required quantum measurements on the number of qubits.
This control scheme is compatible with near-term quantum devices, where the noise is prevalent.
It has been shown that high-fidelity state control can be achieved even if the noise amplitude is at the same level as the control amplitude.
arXiv Detail & Related papers (2022-06-29T06:30:35Z) - Numerical Gate Synthesis for Quantum Heuristics on Bosonic Quantum
Processors [1.195496689595016]
We study the framework in the context of qudits which are controllable electromagnetic modes of a superconducting cavity system.
We showcase control of single-qudit operations up to eight states, and two-qutrit operations, mapped respectively onto a single mode and two modes of the resonator.
arXiv Detail & Related papers (2022-01-19T18:55:13Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Experimentally verifying anti-Kibble-Zurek behavior in a quantum system
under noisy control field [38.305954220018315]
Kibble-Zurek mechanism (KZM) is a universal framework which could in principle describe phase transition phenomenon.
A conflicting observation termed anti-KZ behavior has been reported in the study of ferroelectric phase transition.
Our research sets a stage for quantum simulation of such anti-KZ behavior in two-level systems.
arXiv Detail & Related papers (2020-08-03T14:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.