SAM-Aware Graph Prompt Reasoning Network for Cross-Domain Few-Shot Segmentation
- URL: http://arxiv.org/abs/2501.00303v1
- Date: Tue, 31 Dec 2024 06:38:49 GMT
- Title: SAM-Aware Graph Prompt Reasoning Network for Cross-Domain Few-Shot Segmentation
- Authors: Shi-Feng Peng, Guolei Sun, Yong Li, Hongsong Wang, Guo-Sen Xie,
- Abstract summary: We propose a SAM-aware graph prompt reasoning network (GPRN) to guide CD-FSS feature representation learning.
GPRN transforms masks generated by SAM into visual prompts enriched with high-level semantic information.
We show that our method establishes new state-of-the-art results.
- Score: 25.00605325290872
- License:
- Abstract: The primary challenge of cross-domain few-shot segmentation (CD-FSS) is the domain disparity between the training and inference phases, which can exist in either the input data or the target classes. Previous models struggle to learn feature representations that generalize to various unknown domains from limited training domain samples. In contrast, the large-scale visual model SAM, pre-trained on tens of millions of images from various domains and classes, possesses excellent generalizability. In this work, we propose a SAM-aware graph prompt reasoning network (GPRN) that fully leverages SAM to guide CD-FSS feature representation learning and improve prediction accuracy. Specifically, we propose a SAM-aware prompt initialization module (SPI) to transform the masks generated by SAM into visual prompts enriched with high-level semantic information. Since SAM tends to divide an object into many sub-regions, this may lead to visual prompts representing the same semantic object having inconsistent or fragmented features. We further propose a graph prompt reasoning (GPR) module that constructs a graph among visual prompts to reason about their interrelationships and enable each visual prompt to aggregate information from similar prompts, thus achieving global semantic consistency. Subsequently, each visual prompt embeds its semantic information into the corresponding mask region to assist in feature representation learning. To refine the segmentation mask during testing, we also design a non-parameter adaptive point selection module (APS) to select representative point prompts from query predictions and feed them back to SAM to refine inaccurate segmentation results. Experiments on four standard CD-FSS datasets demonstrate that our method establishes new state-of-the-art results. Code: https://github.com/CVL-hub/GPRN.
Related papers
- IMDPrompter: Adapting SAM to Image Manipulation Detection by Cross-View Automated Prompt Learning [33.15442780576408]
The Segment Anything Model (SAM) has demonstrated exceptional generalization and zero-shot capabilities.
We develop a cross-view prompt learning paradigm called IMDPrompter based on SAM.
IMDPrompter no longer relies on manual guidance, enabling automated detection and localization.
arXiv Detail & Related papers (2025-02-04T16:20:41Z) - Bridge the Points: Graph-based Few-shot Segment Anything Semantically [79.1519244940518]
Recent advancements in pre-training techniques have enhanced the capabilities of vision foundation models.
Recent studies extend the SAM to Few-shot Semantic segmentation (FSS)
We propose a simple yet effective approach based on graph analysis.
arXiv Detail & Related papers (2024-10-09T15:02:28Z) - Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance (UOIS) is crucial for autonomous robots operating in unstructured environments.
We propose UOIS-SAM, a data-efficient solution for the UOIS task.
UOIS-SAM integrates two key components: (i) a Heatmap-based Prompt Generator (HPG) to generate class-agnostic point prompts with precise foreground prediction, and (ii) a Hierarchical Discrimination Network (HDNet) that adapts SAM's mask decoder.
arXiv Detail & Related papers (2024-09-23T19:05:50Z) - TAVP: Task-Adaptive Visual Prompt for Cross-domain Few-shot Segmentation [40.49924427388922]
We propose a task-adaptive auto-visual prompt framework for Cross-dominan Few-shot segmentation (CD-FSS)
We incorporate a Class Domain Task-Adaptive Auto-Prompt (CDTAP) module to enable class-domain feature extraction and generate high-quality, learnable visual prompts.
Our model outperforms the state-of-the-art CD-FSS approach, achieving an average accuracy improvement of 1.3% in the 1-shot setting and 11.76% in the 5-shot setting.
arXiv Detail & Related papers (2024-09-09T07:43:58Z) - Tuning a SAM-Based Model with Multi-Cognitive Visual Adapter to Remote Sensing Instance Segmentation [4.6570959687411975]
The Segment Anything Model (SAM) demonstrates exceptional generalization capabilities.
SAM's lack of pretraining on massive remote sensing images and its interactive structure limit its automatic mask prediction capabilities.
A Multi- cognitive SAM-Based Instance Model (MC-SAM SEG) is introduced to employ SAM on remote sensing domain.
The proposed method named MC-SAM SEG extracts high-quality features by fine-tuning the SAM-Mona encoder along with a feature aggregator.
arXiv Detail & Related papers (2024-08-16T07:23:22Z) - SAM-CP: Marrying SAM with Composable Prompts for Versatile Segmentation [88.80792308991867]
Segment Anything model (SAM) has shown ability to group image pixels into patches, but applying it to semantic-aware segmentation still faces major challenges.
This paper presents SAM-CP, a simple approach that establishes two types of composable prompts beyond SAM and composes them for versatile segmentation.
Experiments show that SAM-CP achieves semantic, instance, and panoptic segmentation in both open and closed domains.
arXiv Detail & Related papers (2024-07-23T17:47:25Z) - AlignSAM: Aligning Segment Anything Model to Open Context via Reinforcement Learning [61.666973416903005]
Segment Anything Model (SAM) has demonstrated its impressive generalization capabilities in open-world scenarios with the guidance of prompts.
We propose a novel framework, termed AlignSAM, designed for automatic prompting for aligning SAM to an open context.
arXiv Detail & Related papers (2024-06-01T16:21:39Z) - Learning to Prompt Segment Anything Models [55.805816693815835]
Segment Anything Models (SAMs) have demonstrated great potential in learning to segment anything.
SAMs work with two types of prompts including spatial prompts (e.g., points) and semantic prompts (e.g., texts)
We propose spatial-semantic prompt learning (SSPrompt) that learns effective semantic and spatial prompts for better SAMs.
arXiv Detail & Related papers (2024-01-09T16:24:25Z) - Relax Image-Specific Prompt Requirement in SAM: A Single Generic Prompt
for Segmenting Camouflaged Objects [32.14438610147615]
We introduce a test-time adaptation per-instance mechanism called Generalizable SAM (GenSAM) to automatically enerate and optimize visual prompts.
Experiments on three benchmarks demonstrate that GenSAM outperforms point supervision approaches.
arXiv Detail & Related papers (2023-12-12T15:43:36Z) - RSPrompter: Learning to Prompt for Remote Sensing Instance Segmentation
based on Visual Foundation Model [29.42043345787285]
We propose a method to learn the generation of appropriate prompts for Segment Anything Model (SAM)
This enables SAM to produce semantically discernible segmentation results for remote sensing images.
We also propose several ongoing derivatives for instance segmentation tasks, drawing on recent advancements within the SAM community, and compare their performance with RSPrompter.
arXiv Detail & Related papers (2023-06-28T14:51:34Z) - Semantic Attention and Scale Complementary Network for Instance
Segmentation in Remote Sensing Images [54.08240004593062]
We propose an end-to-end multi-category instance segmentation model, which consists of a Semantic Attention (SEA) module and a Scale Complementary Mask Branch (SCMB)
SEA module contains a simple fully convolutional semantic segmentation branch with extra supervision to strengthen the activation of interest instances on the feature map.
SCMB extends the original single mask branch to trident mask branches and introduces complementary mask supervision at different scales.
arXiv Detail & Related papers (2021-07-25T08:53:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.