Online Video Understanding: A Comprehensive Benchmark and Memory-Augmented Method
- URL: http://arxiv.org/abs/2501.00584v1
- Date: Tue, 31 Dec 2024 18:17:05 GMT
- Title: Online Video Understanding: A Comprehensive Benchmark and Memory-Augmented Method
- Authors: Zhenpeng Huang, Xinhao Li, Jiaqi Li, Jing Wang, Xiangyu Zeng, Cheng Liang, Tao Wu, Xi Chen, Liang Li, Limin Wang,
- Abstract summary: Multimodal Large Language Models have shown significant progress in offline video understanding.
Applying these models to real-world scenarios, such as autonomous driving and human-computer interaction, presents unique challenges.
This paper presents systematic efforts from three perspectives: evaluation benchmark, model architecture, and training strategy.
- Score: 22.814813541695997
- License:
- Abstract: Multimodal Large Language Models (MLLMs) have shown significant progress in offline video understanding. However, applying these models to real-world scenarios, such as autonomous driving and human-computer interaction, presents unique challenges due to the need for real-time processing of continuous online video streams. To this end, this paper presents systematic efforts from three perspectives: evaluation benchmark, model architecture, and training strategy. First, we introduce OVBench, a comprehensive question-answering benchmark specifically designed to evaluate models' ability to perceive, memorize, and reason within online video contexts. It features six core task types across three temporal contexts-past, present, and future-forming 16 subtasks from diverse datasets. Second, we propose a new Pyramid Memory Bank (PMB) that effectively retains key spatiotemporal information in video streams. Third, we proposed an offline-to-online learning paradigm, designing an interleaved dialogue format for online video data and constructing an instruction-tuning dataset tailored for online video training. This framework led to the development of VideoChat-Online, a robust and efficient model for online video understanding. Despite the lower computational cost and higher efficiency, VideoChat-Online outperforms existing state-of-the-art offline and online models across popular offline video benchmarks and OVBench, demonstrating the effectiveness of our model architecture and training strategy.
Related papers
- Streaming Video Understanding and Multi-round Interaction with Memory-enhanced Knowledge [57.01131456894516]
Current video understanding models struggle with processing long video sequences, supporting multi-turn dialogues, and adapting to real-world dynamic scenarios.
We propose StreamChat, a training-free framework for streaming video reasoning and conversational interaction.
Our framework incorporates a parallel system scheduling strategy that enhances processing speed and reduces latency, ensuring robust performance in real-world applications.
arXiv Detail & Related papers (2025-01-23T08:33:10Z) - Vchitect-2.0: Parallel Transformer for Scaling Up Video Diffusion Models [89.79067761383855]
Vchitect-2.0 is a parallel transformer architecture designed to scale up video diffusion models for large-scale text-to-video generation.
By introducing a novel Multimodal Diffusion Block, our approach achieves consistent alignment between text descriptions and generated video frames.
To overcome memory and computational bottlenecks, we propose a Memory-efficient Training framework.
arXiv Detail & Related papers (2025-01-14T21:53:11Z) - OnlineVPO: Align Video Diffusion Model with Online Video-Centric Preference Optimization [30.6130504613716]
We introduce OnlineVPO, a preference learning approach tailored specifically for video diffusion models.
By employing the video reward model to offer concise video feedback on the fly, OnlineVPO offers effective and efficient preference guidance.
arXiv Detail & Related papers (2024-12-19T18:34:50Z) - VIMI: Grounding Video Generation through Multi-modal Instruction [89.90065445082442]
Existing text-to-video diffusion models rely solely on text-only encoders for their pretraining.
We construct a large-scale multimodal prompt dataset by employing retrieval methods to pair in-context examples with the given text prompts.
We finetune the model from the first stage on three video generation tasks, incorporating multi-modal instructions.
arXiv Detail & Related papers (2024-07-08T18:12:49Z) - VideoLLM-online: Online Video Large Language Model for Streaming Video [27.073238234038826]
We propose a novel Learning-In-Video-Stream framework, which enables temporally aligned, long-context, and real-time conversation within a continuous video stream.
Our framework supports streaming dialogue in a 5-minute video clip at over 10 FPS on an A100 GPU.
It also showcases state-of-the-art performance on public offline video benchmarks, such as recognition, captioning, and forecasting.
arXiv Detail & Related papers (2024-06-17T17:55:32Z) - Flash-VStream: Memory-Based Real-Time Understanding for Long Video Streams [78.72965584414368]
We present Flash-VStream, a video-language model that simulates the memory mechanism of human.
Compared to existing models, Flash-VStream achieves significant reductions in latency inference and VRAM consumption.
We propose VStream-QA, a novel question answering benchmark specifically designed for online video streaming understanding.
arXiv Detail & Related papers (2024-06-12T11:07:55Z) - Tuning Large Multimodal Models for Videos using Reinforcement Learning from AI Feedback [38.708690624594794]
Video and text multimodal alignment remains challenging, primarily due to the deficient volume and quality of multimodal instruction-tune data.
We present a novel alignment strategy that employs multimodal AI system to oversee itself called Reinforcement Learning from AI Feedback (RLAIF)
In specific, we propose context-aware reward modeling by providing detailed video descriptions as context during the generation of preference feedback.
arXiv Detail & Related papers (2024-02-06T06:27:40Z) - Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large
Datasets [36.95521842177614]
We present Stable Video Diffusion - a latent video diffusion model for high-resolution, state-of-the-art text-to-video and image-to-video generation.
We identify and evaluate three different stages for successful training of video LDMs: text-to-image pretraining, video pretraining, and high-quality video finetuning.
arXiv Detail & Related papers (2023-11-25T22:28:38Z) - OnlineRefer: A Simple Online Baseline for Referring Video Object
Segmentation [75.07460026246582]
Referring video object segmentation (RVOS) aims at segmenting an object in a video following human instruction.
Current state-of-the-art methods fall into an offline pattern, in which each clip independently interacts with text embedding.
We propose a simple yet effective online model using explicit query propagation, named OnlineRefer.
arXiv Detail & Related papers (2023-07-18T15:43:35Z) - Collaborative Reasoning on Multi-Modal Semantic Graphs for
Video-Grounded Dialogue Generation [53.87485260058957]
We study video-grounded dialogue generation, where a response is generated based on the dialogue context and the associated video.
The primary challenges of this task lie in (1) the difficulty of integrating video data into pre-trained language models (PLMs)
We propose a multi-agent reinforcement learning method to collaboratively perform reasoning on different modalities.
arXiv Detail & Related papers (2022-10-22T14:45:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.