The Silent Majority: Demystifying Memorization Effect in the Presence of Spurious Correlations
- URL: http://arxiv.org/abs/2501.00961v2
- Date: Wed, 15 Jan 2025 06:46:51 GMT
- Title: The Silent Majority: Demystifying Memorization Effect in the Presence of Spurious Correlations
- Authors: Chenyu You, Haocheng Dai, Yifei Min, Jasjeet S. Sekhon, Sarang Joshi, James S. Duncan,
- Abstract summary: This paper systematically shows the ubiquitous existence of spurious features in a small set of neurons within the network.
We find the property of a small subset of neurons or channels in memorizing minority group information.
To substantiate this hypothesis, we show that eliminating these unnecessary spurious memorization patterns via a novel framework during training can significantly affect the model performance on minority groups.
- Score: 19.824897288786303
- License:
- Abstract: Machine learning models often rely on simple spurious features -- patterns in training data that correlate with targets but are not causally related to them, like image backgrounds in foreground classification. This reliance typically leads to imbalanced test performance across minority and majority groups. In this work, we take a closer look at the fundamental cause of such imbalanced performance through the lens of memorization, which refers to the ability to predict accurately on \textit{atypical} examples (minority groups) in the training set but failing in achieving the same accuracy in the testing set. This paper systematically shows the ubiquitous existence of spurious features in a small set of neurons within the network, providing the first-ever evidence that memorization may contribute to imbalanced group performance. Through three experimental sources of converging empirical evidence, we find the property of a small subset of neurons or channels in memorizing minority group information. Inspired by these findings, we articulate the hypothesis: the imbalanced group performance is a byproduct of ``noisy'' spurious memorization confined to a small set of neurons. To further substantiate this hypothesis, we show that eliminating these unnecessary spurious memorization patterns via a novel framework during training can significantly affect the model performance on minority groups. Our experimental results across various architectures and benchmarks offer new insights on how neural networks encode core and spurious knowledge, laying the groundwork for future research in demystifying robustness to spurious correlation.
Related papers
- Elastic Representation: Mitigating Spurious Correlations for Group Robustness [24.087096334524077]
Deep learning models can suffer from severe performance degradation when relying on spurious correlations between input features and labels.
We propose Elastic Representation (ElRep) to learn features by imposing Nuclear- and Frobenius-norm penalties on the representation from the last layer of a neural network.
arXiv Detail & Related papers (2025-02-14T01:25:27Z) - FairDropout: Using Example-Tied Dropout to Enhance Generalization of Minority Groups [10.274236106456758]
We show that models trained with empirical risk minimization tend to generalize well for examples from the majority groups while memorizing instances from minority groups.
We apply example-tied dropout as a method we term FairDropout, aimed at redirecting this memorization to specific neurons that we subsequently drop out during inference.
We empirically evaluate FairDropout using the subpopulation benchmark suite encompassing vision, language, and healthcare tasks, demonstrating that it significantly reduces reliance on spurious correlations, and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2025-02-10T17:18:54Z) - Navigate Beyond Shortcuts: Debiased Learning through the Lens of Neural Collapse [19.279084204631204]
We extend the investigation of Neural Collapse to the biased datasets with imbalanced attributes.
We propose an avoid-shortcut learning framework without additional training complexity.
With well-designed shortcut primes based on Neural Collapse structure, the models are encouraged to skip the pursuit of simple shortcuts.
arXiv Detail & Related papers (2024-05-09T07:23:37Z) - Decorrelating neurons using persistence [29.25969187808722]
We present two regularisation terms computed from the weights of a minimum spanning tree of a clique.
We demonstrate that naive minimisation of all correlations between neurons obtains lower accuracies than our regularisation terms.
We include a proof of differentiability of our regularisers, thus developing the first effective topological persistence-based regularisation terms.
arXiv Detail & Related papers (2023-08-09T11:09:14Z) - Measures of Information Reflect Memorization Patterns [53.71420125627608]
We show that the diversity in the activation patterns of different neurons is reflective of model generalization and memorization.
Importantly, we discover that information organization points to the two forms of memorization, even for neural activations computed on unlabelled in-distribution examples.
arXiv Detail & Related papers (2022-10-17T20:15:24Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Uniform Convergence, Adversarial Spheres and a Simple Remedy [40.44709296304123]
Previous work has cast doubt on the general framework of uniform convergence and its ability to explain generalization in neural networks.
We provide an extensive theoretical investigation of the previously studied data setting through the lens of infinitely-wide models.
We prove that the Neural Tangent Kernel (NTK) also suffers from the same phenomenon and we uncover its origin.
arXiv Detail & Related papers (2021-05-07T20:23:01Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
Gradient Starvation arises when cross-entropy loss is minimized by capturing only a subset of features relevant for the task.
This work provides a theoretical explanation for the emergence of such feature imbalance in neural networks.
arXiv Detail & Related papers (2020-11-18T18:52:08Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity.
We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective.
Instead the implicit memory of learned samples within the assessed model itself is exploited.
arXiv Detail & Related papers (2020-06-22T15:07:06Z) - An Investigation of Why Overparameterization Exacerbates Spurious
Correlations [98.3066727301239]
We identify two key properties of the training data that drive this behavior.
We show how the inductive bias of models towards "memorizing" fewer examples can cause over parameterization to hurt.
arXiv Detail & Related papers (2020-05-09T01:59:13Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.