MSC-Bench: Benchmarking and Analyzing Multi-Sensor Corruption for Driving Perception
- URL: http://arxiv.org/abs/2501.01037v1
- Date: Thu, 02 Jan 2025 03:38:46 GMT
- Title: MSC-Bench: Benchmarking and Analyzing Multi-Sensor Corruption for Driving Perception
- Authors: Xiaoshuai Hao, Guanqun Liu, Yuting Zhao, Yuheng Ji, Mengchuan Wei, Haimei Zhao, Lingdong Kong, Rong Yin, Yu Liu,
- Abstract summary: Multi-sensor fusion models play a crucial role in autonomous driving perception, particularly in tasks like 3D object detection and HD map construction.
These models provide essential and comprehensive static environmental information for autonomous driving systems.
While camera-LiDAR fusion methods have shown promising results, they often depend on complete sensor inputs.
This reliance can lead to low robustness and potential failures when sensors are corrupted or missing, raising significant safety concerns.
To tackle this challenge, we introduce the Multi-Sensor Corruption Benchmark (MSC-Bench), the first comprehensive benchmark aimed at evaluating the robustness of multi-sensor autonomous driving perception models against various sensor corruption
- Score: 9.575044300747061
- License:
- Abstract: Multi-sensor fusion models play a crucial role in autonomous driving perception, particularly in tasks like 3D object detection and HD map construction. These models provide essential and comprehensive static environmental information for autonomous driving systems. While camera-LiDAR fusion methods have shown promising results by integrating data from both modalities, they often depend on complete sensor inputs. This reliance can lead to low robustness and potential failures when sensors are corrupted or missing, raising significant safety concerns. To tackle this challenge, we introduce the Multi-Sensor Corruption Benchmark (MSC-Bench), the first comprehensive benchmark aimed at evaluating the robustness of multi-sensor autonomous driving perception models against various sensor corruptions. Our benchmark includes 16 combinations of corruption types that disrupt both camera and LiDAR inputs, either individually or concurrently. Extensive evaluations of six 3D object detection models and four HD map construction models reveal substantial performance degradation under adverse weather conditions and sensor failures, underscoring critical safety issues. The benchmark toolkit and affiliated code and model checkpoints have been made publicly accessible.
Related papers
- MultiCorrupt: A Multi-Modal Robustness Dataset and Benchmark of LiDAR-Camera Fusion for 3D Object Detection [5.462358595564476]
Multi-modal 3D object detection models for automated driving have demonstrated exceptional performance on computer vision benchmarks like nuScenes.
However, their reliance on densely sampled LiDAR point clouds and meticulously calibrated sensor arrays poses challenges for real-world applications.
We introduce MultiCorrupt, a benchmark designed to evaluate the robustness of multi-modal 3D object detectors against ten distinct types of corruptions.
arXiv Detail & Related papers (2024-02-18T18:56:13Z) - Multi-Modal 3D Object Detection by Box Matching [109.43430123791684]
We propose a novel Fusion network by Box Matching (FBMNet) for multi-modal 3D detection.
With the learned assignments between 3D and 2D object proposals, the fusion for detection can be effectively performed by combing their ROI features.
arXiv Detail & Related papers (2023-05-12T18:08:51Z) - Robo3D: Towards Robust and Reliable 3D Perception against Corruptions [58.306694836881235]
We present Robo3D, the first comprehensive benchmark heading toward probing the robustness of 3D detectors and segmentors under out-of-distribution scenarios.
We consider eight corruption types stemming from severe weather conditions, external disturbances, and internal sensor failure.
We propose a density-insensitive training framework along with a simple flexible voxelization strategy to enhance the model resiliency.
arXiv Detail & Related papers (2023-03-30T17:59:17Z) - Benchmarking Robustness of 3D Object Detection to Common Corruptions in
Autonomous Driving [44.753797839280516]
Existing 3D detectors lack robustness to real-world corruptions caused by adverse weathers, sensor noises, etc.
We benchmark 27 types of common corruptions for both LiDAR and camera inputs considering real-world driving scenarios.
We conduct large-scale experiments on 24 diverse 3D object detection models to evaluate their robustness.
arXiv Detail & Related papers (2023-03-20T11:45:54Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Safety-Enhanced Autonomous Driving Using Interpretable Sensor Fusion
Transformer [28.15612357340141]
We propose a safety-enhanced autonomous driving framework, named Interpretable Sensor Fusion Transformer(InterFuser)
We process and fuse information from multi-modal multi-view sensors for achieving comprehensive scene understanding and adversarial event detection.
Our framework provides more semantics and are exploited to better constrain actions to be within the safe sets.
arXiv Detail & Related papers (2022-07-28T11:36:21Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - Sensor Adversarial Traits: Analyzing Robustness of 3D Object Detection
Sensor Fusion Models [16.823829387723524]
We analyze the robustness of a high-performance, open source sensor fusion model architecture towards adversarial attacks.
We find that despite the use of a LIDAR sensor, the model is vulnerable to our purposefully crafted image-based adversarial attacks.
arXiv Detail & Related papers (2021-09-13T23:38:42Z) - Exploring Adversarial Robustness of Multi-Sensor Perception Systems in
Self Driving [87.3492357041748]
In this paper, we showcase practical susceptibilities of multi-sensor detection by placing an adversarial object on top of a host vehicle.
Our experiments demonstrate that successful attacks are primarily caused by easily corrupted image features.
Towards more robust multi-modal perception systems, we show that adversarial training with feature denoising can boost robustness to such attacks significantly.
arXiv Detail & Related papers (2021-01-17T21:15:34Z) - Investigating the Effect of Sensor Modalities in Multi-Sensor
Detection-Prediction Models [8.354898936252516]
We focus on the contribution of sensor modalities towards the model performance.
In addition, we investigate the use of sensor dropout to mitigate the above-mentioned issues.
arXiv Detail & Related papers (2021-01-09T03:21:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.