Pruning-based Data Selection and Network Fusion for Efficient Deep Learning
- URL: http://arxiv.org/abs/2501.01118v1
- Date: Thu, 02 Jan 2025 07:35:53 GMT
- Title: Pruning-based Data Selection and Network Fusion for Efficient Deep Learning
- Authors: Humaira Kousar, Hasnain Irshad Bhatti, Jaekyun Moon,
- Abstract summary: PruneFuse is a novel method that combines pruning and network fusion to enhance data selection and accelerate training.
In PruneFuse, the original dense network is pruned to generate a smaller surrogate model that efficiently selects the most informative samples from the dataset.
- Score: 13.900633576526863
- License:
- Abstract: Efficient data selection is essential for improving the training efficiency of deep neural networks and reducing the associated annotation costs. However, traditional methods tend to be computationally expensive, limiting their scalability and real-world applicability. We introduce PruneFuse, a novel method that combines pruning and network fusion to enhance data selection and accelerate network training. In PruneFuse, the original dense network is pruned to generate a smaller surrogate model that efficiently selects the most informative samples from the dataset. Once this iterative data selection selects sufficient samples, the insights learned from the pruned model are seamlessly integrated with the dense model through network fusion, providing an optimized initialization that accelerates training. Extensive experimentation on various datasets demonstrates that PruneFuse significantly reduces computational costs for data selection, achieves better performance than baselines, and accelerates the overall training process.
Related papers
- Optimizing Data Curation through Spectral Analysis and Joint Batch Selection (SALN) [0.0]
This paper introduces SALN, a method designed to prioritize and select samples within each batch rather than from the entire dataset.
The proposed method applies a spectral analysis-based to identify the most informative data points within each batch, improving both training speed and accuracy.
It demonstrates up to an 8x reduction in training time and up to a 5% increase in accuracy over standard training methods.
arXiv Detail & Related papers (2024-12-22T15:38:36Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - Data curation via joint example selection further accelerates multimodal learning [3.329535792151987]
We show that jointly selecting batches of data is more effective for learning than selecting examples independently.
We derive a simple and tractable algorithm for selecting such batches, which significantly accelerate training beyond individually-prioritized data points.
arXiv Detail & Related papers (2024-06-25T16:52:37Z) - KAKURENBO: Adaptively Hiding Samples in Deep Neural Network Training [2.8804804517897935]
We propose a method for hiding the least-important samples during the training of deep neural networks.
We adaptively find samples to exclude in a given epoch based on their contribution to the overall learning process.
Our method can reduce total training time by up to 22% impacting accuracy only by 0.4% compared to the baseline.
arXiv Detail & Related papers (2023-10-16T06:19:29Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Iterative self-transfer learning: A general methodology for response
time-history prediction based on small dataset [0.0]
An iterative self-transfer learningmethod for training neural networks based on small datasets is proposed in this study.
The results show that the proposed method can improve the model performance by near an order of magnitude on small datasets.
arXiv Detail & Related papers (2023-06-14T18:48:04Z) - Optimal transfer protocol by incremental layer defrosting [66.76153955485584]
Transfer learning is a powerful tool enabling model training with limited amounts of data.
The simplest transfer learning protocol is based on freezing" the feature-extractor layers of a network pre-trained on a data-rich source task.
We show that this protocol is often sub-optimal and the largest performance gain may be achieved when smaller portions of the pre-trained network are kept frozen.
arXiv Detail & Related papers (2023-03-02T17:32:11Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
Online Self-Acquired Knowledge Distillation (OSAKD) is proposed, aiming to improve the performance of any deep neural model in an online manner.
We utilize k-nn non-parametric density estimation technique for estimating the unknown probability distributions of the data samples in the output feature space.
arXiv Detail & Related papers (2021-08-26T14:01:04Z) - Drill the Cork of Information Bottleneck by Inputting the Most Important
Data [28.32769151293851]
How to efficiently train deep neural networks remains to be solved.
The information bottleneck (IB) theory claims that the optimization process consists of an initial fitting phase and the following compression phase.
We show that the fitting phase depicted in the IB theory will be boosted with a high signal-to-noise ratio if the typicality sampling is appropriately adopted.
arXiv Detail & Related papers (2021-05-15T09:20:36Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.