Symmetries-enhanced Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2501.01136v1
- Date: Thu, 02 Jan 2025 08:41:31 GMT
- Title: Symmetries-enhanced Multi-Agent Reinforcement Learning
- Authors: Nikolaos Bousias, Stefanos Pertigkiozoglou, Kostas Daniilidis, George Pappas,
- Abstract summary: Multi-agent reinforcement learning has emerged as a powerful framework for enabling agents to learn complex, coordinated behaviors.
Recent advancements have sought to alleviate those issues by embedding intrinsic symmetries of the systems in the policy.
This paper presents a novel framework for embedding extrinsic symmetries in multi-agent system dynamics.
- Score: 25.383183391244373
- License:
- Abstract: Multi-agent reinforcement learning has emerged as a powerful framework for enabling agents to learn complex, coordinated behaviors but faces persistent challenges regarding its generalization, scalability and sample efficiency. Recent advancements have sought to alleviate those issues by embedding intrinsic symmetries of the systems in the policy. Yet, most dynamical systems exhibit little to no symmetries to exploit. This paper presents a novel framework for embedding extrinsic symmetries in multi-agent system dynamics that enables the use of symmetry-enhanced methods to address systems with insufficient intrinsic symmetries, expanding the scope of equivariant learning to a wide variety of MARL problems. Central to our framework is the Group Equivariant Graphormer, a group-modular architecture specifically designed for distributed swarming tasks. Extensive experiments on a swarm of symmetry-breaking quadrotors validate the effectiveness of our approach, showcasing its potential for improved generalization and zero-shot scalability. Our method achieves significant reductions in collision rates and enhances task success rates across a diverse range of scenarios and varying swarm sizes.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Tasks Makyth Models: Machine Learning Assisted Surrogates for Tipping
Points [0.0]
We present a machine learning (ML)-assisted framework for detecting tipping points in the emergent behavior of complex systems.
We construct reduced-order models for the emergent dynamics at different scales.
We contrast the uses of the different models and the effort involved in learning them.
arXiv Detail & Related papers (2023-09-25T17:58:23Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - ${\rm E}(3)$-Equivariant Actor-Critic Methods for Cooperative Multi-Agent Reinforcement Learning [7.712824077083934]
We focus on exploiting Euclidean symmetries inherent in certain cooperative multi-agent reinforcement learning problems.
We design neural network architectures with symmetric constraints embedded as an inductive bias for multi-agent actor-critic methods.
arXiv Detail & Related papers (2023-08-23T00:18:17Z) - Decentralized Adversarial Training over Graphs [55.28669771020857]
The vulnerability of machine learning models to adversarial attacks has been attracting considerable attention in recent years.
This work studies adversarial training over graphs, where individual agents are subjected to varied strength perturbation space.
arXiv Detail & Related papers (2023-03-23T15:05:16Z) - Multi-Symmetry Ensembles: Improving Diversity and Generalization via
Opposing Symmetries [14.219011458423363]
We present Multi-Symmetry Ensembles (MSE), a framework for constructing diverse ensembles by capturing the multiplicity of hypotheses along symmetry axes.
MSE effectively captures the multiplicity of conflicting hypotheses that is often required in large, diverse datasets like ImageNet.
As a result of their inherent diversity, MSE improves classification performance, uncertainty quantification, and generalization across a series of transfer tasks.
arXiv Detail & Related papers (2023-03-04T19:11:54Z) - Multi-Agent MDP Homomorphic Networks [100.74260120972863]
In cooperative multi-agent systems, complex symmetries arise between different configurations of the agents and their local observations.
Existing work on symmetries in single agent reinforcement learning can only be generalized to the fully centralized setting.
This paper introduces Multi-Agent MDP Homomorphic Networks, a class of networks that allows distributed execution using only local information.
arXiv Detail & Related papers (2021-10-09T07:46:25Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
We present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial examples.
We also propose a new generative method called Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples.
Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm.
arXiv Detail & Related papers (2020-10-15T16:07:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.