Blind Men and the Elephant: Diverse Perspectives on Gender Stereotypes in Benchmark Datasets
- URL: http://arxiv.org/abs/2501.01168v1
- Date: Thu, 02 Jan 2025 09:40:31 GMT
- Title: Blind Men and the Elephant: Diverse Perspectives on Gender Stereotypes in Benchmark Datasets
- Authors: Mahdi Zakizadeh, Mohammad Taher Pilehvar,
- Abstract summary: This paper focuses on intrinsic bias mitigation and measurement strategies for language models.
We delve deeper into intrinsic measurements, identifying inconsistencies and suggesting that these benchmarks may reflect different facets of gender stereotype.
Our findings underscore the complexity of gender stereotyping in language models and point to new directions for developing more refined techniques to detect and reduce bias.
- Score: 17.101242741559428
- License:
- Abstract: The multifaceted challenge of accurately measuring gender stereotypical bias in language models is akin to discerning different segments of a broader, unseen entity. This short paper primarily focuses on intrinsic bias mitigation and measurement strategies for language models, building on prior research that demonstrates a lack of correlation between intrinsic and extrinsic approaches. We delve deeper into intrinsic measurements, identifying inconsistencies and suggesting that these benchmarks may reflect different facets of gender stereotype. Our methodology involves analyzing data distributions across datasets and integrating gender stereotype components informed by social psychology. By adjusting the distribution of two datasets, we achieve a better alignment of outcomes. Our findings underscore the complexity of gender stereotyping in language models and point to new directions for developing more refined techniques to detect and reduce bias.
Related papers
- Identifying Gender Stereotypes and Biases in Automated Translation from English to Italian using Similarity Networks [0.25049267048783647]
This paper is a collaborative effort between Linguistics, Law, and Computer Science to evaluate stereotypes and biases in automated translation systems.
We advocate gender-neutral translation as a means to promote gender inclusion and improve the objectivity of machine translation.
arXiv Detail & Related papers (2025-02-17T09:55:32Z) - The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models [58.130894823145205]
We center transgender, nonbinary, and other gender-diverse identities to investigate how alignment procedures interact with pre-existing gender-diverse bias.
Our findings reveal that DPO-aligned models are particularly sensitive to supervised finetuning.
We conclude with recommendations tailored to DPO and broader alignment practices.
arXiv Detail & Related papers (2024-11-06T06:50:50Z) - Locating and Mitigating Gender Bias in Large Language Models [40.78150878350479]
Large language models (LLM) are pre-trained on extensive corpora to learn facts and human cognition which contain human preferences.
This process can inadvertently lead to these models acquiring biases and prevalent stereotypes in society.
We propose the LSDM (Least Square Debias Method), a knowledge-editing based method for mitigating gender bias in occupational pronouns.
arXiv Detail & Related papers (2024-03-21T13:57:43Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGender is a novel dataset for benchmarking gender bias in vision-language models.
We focus on occupation-related biases within a hegemonic system of binary gender, inspired by Winograd and Winogender schemas.
We benchmark several state-of-the-art vision-language models and find that they demonstrate bias in resolving binary gender in complex scenes.
arXiv Detail & Related papers (2023-06-21T17:59:51Z) - Gender Bias in Transformer Models: A comprehensive survey [1.1011268090482573]
Gender bias in artificial intelligence (AI) has emerged as a pressing concern with profound implications for individuals' lives.
This paper presents a comprehensive survey that explores gender bias in Transformer models from a linguistic perspective.
arXiv Detail & Related papers (2023-06-18T11:40:47Z) - Gender Biases in Automatic Evaluation Metrics for Image Captioning [87.15170977240643]
We conduct a systematic study of gender biases in model-based evaluation metrics for image captioning tasks.
We demonstrate the negative consequences of using these biased metrics, including the inability to differentiate between biased and unbiased generations.
We present a simple and effective way to mitigate the metric bias without hurting the correlations with human judgments.
arXiv Detail & Related papers (2023-05-24T04:27:40Z) - Counter-GAP: Counterfactual Bias Evaluation through Gendered Ambiguous
Pronouns [53.62845317039185]
Bias-measuring datasets play a critical role in detecting biased behavior of language models.
We propose a novel method to collect diverse, natural, and minimally distant text pairs via counterfactual generation.
We show that four pre-trained language models are significantly more inconsistent across different gender groups than within each group.
arXiv Detail & Related papers (2023-02-11T12:11:03Z) - Gender Stereotyping Impact in Facial Expression Recognition [1.5340540198612824]
In recent years, machine learning-based models have become the most popular approach to Facial Expression Recognition (FER)
In publicly available FER datasets, apparent gender representation is usually mostly balanced, but their representation in the individual label is not.
We generate derivative datasets with different amounts of stereotypical bias by altering the gender proportions of certain labels.
We observe a discrepancy in the recognition of certain emotions between genders of up to $29 %$ under the worst bias conditions.
arXiv Detail & Related papers (2022-10-11T10:52:23Z) - The Birth of Bias: A case study on the evolution of gender bias in an
English language model [1.6344851071810076]
We use a relatively small language model, using the LSTM architecture trained on an English Wikipedia corpus.
We find that the representation of gender is dynamic and identify different phases during training.
We show that gender information is represented increasingly locally in the input embeddings of the model.
arXiv Detail & Related papers (2022-07-21T00:59:04Z) - Towards Understanding and Mitigating Social Biases in Language Models [107.82654101403264]
Large-scale pretrained language models (LMs) can be potentially dangerous in manifesting undesirable representational biases.
We propose steps towards mitigating social biases during text generation.
Our empirical results and human evaluation demonstrate effectiveness in mitigating bias while retaining crucial contextual information.
arXiv Detail & Related papers (2021-06-24T17:52:43Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.