DeepFilter: An Instrumental Baseline for Accurate and Efficient Process Monitoring
- URL: http://arxiv.org/abs/2501.01342v1
- Date: Thu, 02 Jan 2025 16:47:55 GMT
- Title: DeepFilter: An Instrumental Baseline for Accurate and Efficient Process Monitoring
- Authors: Hao Wang, Zhichao Chen, Licheng Pan, Xiaoyu Jiang, Yichen Song, Qunshan He, Xinggao Liu,
- Abstract summary: We propose DeepFilter, a Transformer-style framework for process monitoring.
The core innovation is an efficient filtering layer that excel capturing long-term and periodic patterns with reduced complexity.
Tests on real-world process monitoring datasets validate DeepFilter's superiority in terms of accuracy and efficiency.
- Score: 8.788360780796863
- License:
- Abstract: Effective process monitoring is increasingly vital in industrial automation for ensuring operational safety, necessitating both high accuracy and efficiency. Although Transformers have demonstrated success in various fields, their canonical form based on the self-attention mechanism is inadequate for process monitoring due to two primary limitations: (1) the step-wise correlations captured by self-attention mechanism are difficult to capture discriminative patterns in monitoring logs due to the lacking semantics of each step, thus compromising accuracy; (2) the quadratic computational complexity of self-attention hampers efficiency. To address these issues, we propose DeepFilter, a Transformer-style framework for process monitoring. The core innovation is an efficient filtering layer that excel capturing long-term and periodic patterns with reduced complexity. Equipping with the global filtering layer, DeepFilter enhances both accuracy and efficiency, meeting the stringent demands of process monitoring. Experimental results on real-world process monitoring datasets validate DeepFilter's superiority in terms of accuracy and efficiency compared to existing state-of-the-art models.
Related papers
- Decentralized Entropy-Based Ransomware Detection Using Autonomous Feature Resonance [0.0]
A novel approach, termed Autonomous Feature Resonance, is introduced to address the limitations of traditional ransomware detection methods.
The proposed method achieves an overall detection accuracy of 97.3%, with false positive and false negative rates of 1.8% and 2.1%, respectively.
arXiv Detail & Related papers (2025-02-14T00:26:10Z) - Code-as-Monitor: Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection [56.66677293607114]
We propose Code-as-Monitor (CaM) for both open-set reactive and proactive failure detection.
To enhance the accuracy and efficiency of monitoring, we introduce constraint elements that abstract constraint-related entities.
Experiments show that CaM achieves a 28.7% higher success rate and reduces execution time by 31.8% under severe disturbances.
arXiv Detail & Related papers (2024-12-05T18:58:27Z) - Twin Transformer using Gated Dynamic Learnable Attention mechanism for Fault Detection and Diagnosis in the Tennessee Eastman Process [0.40964539027092917]
Fault detection and diagnosis (FDD) is a crucial task for ensuring the safety and efficiency of industrial processes.
We propose a novel FDD methodology for the Tennessee Eastman Process (TEP), a widely used benchmark for chemical process control.
A novel attention mechanism, Gated Dynamic Learnable Attention (GDLAttention), is introduced which integrates a gating mechanism and dynamic learning capabilities.
arXiv Detail & Related papers (2024-03-16T07:40:23Z) - Accelerate Presolve in Large-Scale Linear Programming via Reinforcement
Learning [92.31528918811007]
We propose a simple and efficient reinforcement learning framework -- namely, reinforcement learning for presolve (RL4Presolve) -- to tackle (P1)-(P3) simultaneously.
Experiments on two solvers and eight benchmarks (real-world and synthetic) demonstrate that RL4Presolve significantly and consistently improves the efficiency of solving large-scale LPs.
arXiv Detail & Related papers (2023-10-18T09:51:59Z) - Efficient Deep Reinforcement Learning Requires Regulating Overfitting [91.88004732618381]
We show that high temporal-difference (TD) error on the validation set of transitions is the main culprit that severely affects the performance of deep RL algorithms.
We show that a simple online model selection method that targets the validation TD error is effective across state-based DMC and Gym tasks.
arXiv Detail & Related papers (2023-04-20T17:11:05Z) - RegFormer: An Efficient Projection-Aware Transformer Network for
Large-Scale Point Cloud Registration [73.69415797389195]
We propose an end-to-end transformer network (RegFormer) for large-scale point cloud alignment.
Specifically, a projection-aware hierarchical transformer is proposed to capture long-range dependencies and filter outliers.
Our transformer has linear complexity, which guarantees high efficiency even for large-scale scenes.
arXiv Detail & Related papers (2023-03-22T08:47:37Z) - AttentionMixer: An Accurate and Interpretable Framework for Process
Monitoring [8.155472809416969]
A data-driven approach, AttentionMixer, is proposed to establish an accurate and interpretable radiation monitoring framework for energy conversion plants.
To improve the model accuracy, the first technical contribution involves the development of spatial and temporal adaptive message passing blocks.
The second technical contribution involves the implementation of a sparse message passing regularizer, which eliminates spurious and noisy message passing routes.
arXiv Detail & Related papers (2023-02-21T03:38:37Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z) - Efficient Two-Stream Network for Violence Detection Using Separable
Convolutional LSTM [0.0]
We propose an efficient two-stream deep learning architecture leveraging Separable Convolutional LSTM (SepConvLSTM) and pre-trained MobileNet.
SepConvLSTM is constructed by replacing convolution operation at each gate of ConvLSTM with a depthwise separable convolution.
Our model outperforms the accuracy on the larger and more challenging RWF-2000 dataset by more than a 2% margin.
arXiv Detail & Related papers (2021-02-21T12:01:48Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.