Human-AI Teaming Using Large Language Models: Boosting Brain-Computer Interfacing (BCI) and Brain Research
- URL: http://arxiv.org/abs/2501.01451v1
- Date: Mon, 30 Dec 2024 20:26:03 GMT
- Title: Human-AI Teaming Using Large Language Models: Boosting Brain-Computer Interfacing (BCI) and Brain Research
- Authors: Maryna Kapitonova, Tonio Ball,
- Abstract summary: We introduce the collaborative concept for human-AI teaming based on a set of Janusian design principles.
ChatBCI is a Python-based toolbox for enabling human-AI collaboration.
Our approach can be straightforwardly extended to broad neurotechnological and neuroscientific topics.
- Score: 1.7265013728931
- License:
- Abstract: Recently, there is an increasing interest in using artificial intelligence (AI) to automate aspects of the research process, or even autonomously conduct the full research cycle from idea generation, over data analysis, to composing and evaluation of scientific manuscripts. Examples of working AI scientist systems have been demonstrated for computer science tasks and running molecular biology labs. While some approaches aim for full autonomy of the scientific AI, others rather aim for leveraging human-AI teaming. Here, we address how to adapt such approaches for boosting Brain-Computer Interface (BCI) development, as well as brain research resp. neuroscience at large. We argue that at this time, a strong emphasis on human-AI teaming, in contrast to fully autonomous AI BCI researcher will be the most promising way forward. We introduce the collaborative workspaces concept for human-AI teaming based on a set of Janusian design principles, looking both ways, to the human as well as to the AI side. Based on these principles, we present ChatBCI, a Python-based toolbox for enabling human-AI collaboration based on interaction with Large Language Models (LLMs), designed for BCI research and development projects. We show how ChatBCI was successfully used in a concrete BCI project on advancing motor imagery decoding from EEG signals. Our approach can be straightforwardly extended to broad neurotechnological and neuroscientific topics, and may by design facilitate human expert knowledge transfer to scientific AI systems in general.
Related papers
- AI-Enhanced Sensemaking: Exploring the Design of a Generative AI-Based Assistant to Support Genetic Professionals [38.54324092761751]
Generative AI has the potential to transform knowledge work, but further research is needed to understand how knowledge workers envision using and interacting with generative AI.
Our research focused on designing a generative AI assistant to aid genetic professionals in analyzing whole genome sequences (WGS) and other clinical data for rare disease diagnosis.
arXiv Detail & Related papers (2024-12-19T22:54:49Z) - Aligning Generalisation Between Humans and Machines [74.120848518198]
Recent advances in AI have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals.
The responsible use of AI increasingly shows the need for human-AI teaming.
A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise.
arXiv Detail & Related papers (2024-11-23T18:36:07Z) - CREW: Facilitating Human-AI Teaming Research [3.7324091969140776]
We introduce CREW, a platform to facilitate Human-AI teaming research in real-time decision-making scenarios.
It includes pre-built tasks for cognitive studies and Human-AI teaming with expandable potentials from our modular design.
CREW benchmarks real-time human-guided reinforcement learning agents using state-of-the-art algorithms and well-tuned baselines.
arXiv Detail & Related papers (2024-07-31T21:43:55Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AI systems need to be explainable to the humans in the loop.
We will discuss how the AI agent can use mental models to either conform to human expectations, or change those expectations through explanatory communication.
While the main focus of the book is on cooperative scenarios, we will point out how the same mental models can be used for obfuscation and deception.
arXiv Detail & Related papers (2024-05-19T22:22:21Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - Applying HCAI in developing effective human-AI teaming: A perspective
from human-AI joint cognitive systems [10.746728034149989]
Research and application have used human-AI teaming (HAT) as a new paradigm to develop AI systems.
We elaborate on our proposed conceptual framework of human-AI joint cognitive systems (HAIJCS)
We propose a conceptual framework of human-AI joint cognitive systems (HAIJCS) to represent and implement HAT.
arXiv Detail & Related papers (2023-07-08T06:26:38Z) - BO-Muse: A human expert and AI teaming framework for accelerated
experimental design [58.61002520273518]
Our algorithm lets the human expert take the lead in the experimental process.
We show that our algorithm converges sub-linearly, at a rate faster than the AI or human alone.
arXiv Detail & Related papers (2023-03-03T02:56:05Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
There is no clear definition of what is meant by Human Centered Artificial Intelligence.
This paper introduces the term HCAI agent to refer to any physical or software computational agent equipped with AI components.
We see the notion of HCAI agent, together with its components and functions, as a way to bridge the technical and non-technical discussions on human-centered AI.
arXiv Detail & Related papers (2021-12-29T09:58:59Z) - Human-Centered AI for Data Science: A Systematic Approach [48.71756559152512]
Human-Centered AI (HCAI) refers to the research effort that aims to design and implement AI techniques to support various human tasks.
We illustrate how we approach HCAI using a series of research projects around Data Science (DS) works as a case study.
arXiv Detail & Related papers (2021-10-03T21:47:13Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
We propose a user-centred framework for XAI that focuses on its social-interactive aspect.
The framework aims to provide a structure for interactive XAI solutions thought for non-expert users.
arXiv Detail & Related papers (2021-09-27T09:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.