Electron hopping induced phonon pumping in opto-mechanical molecular nanocavities
- URL: http://arxiv.org/abs/2501.01671v2
- Date: Thu, 06 Feb 2025 14:33:56 GMT
- Title: Electron hopping induced phonon pumping in opto-mechanical molecular nanocavities
- Authors: Yu Bai, Ilya Razdolski, Zhizi Guan, Ping Tang, Xiu Liang, David J. Srolovitz, Anatoly V. Zayats, Dangyuan Lei,
- Abstract summary: Plasmonic molecular nanojunctions exhibit opto-mechanical coupling at the nanoscale.
We demonstrate plasmon-mediated phonon pumping, driven by inelastic electron hopping in conductive molecules.
Our findings provide a microscopic description for vibrational, optical, and electronic phenomena in plasmonic nanocavities.
- Score: 8.942289689181226
- License:
- Abstract: Plasmonic molecular nanojunctions exhibit opto-mechanical coupling at the nanoscale, enabling intertwined optical, vibrational and electronic phenomena. Here, we demonstrate plasmon-mediated phonon pumping, driven by inelastic electron hopping in conductive molecules, which results in strong Raman nonlinearity at the light intensities almost three orders of magnitude lower than in the conventional opto-mechanical systems and up to four-fold enhancement of the effective Raman polarizability due to vibrational electron-phonon coupling. We also developed a microscopic framework of opto-mechanical electron-phonon coupling in molecular nanojunctions based on the Marcus electron hopping. Systematically varying electrical conductance of the molecules in the junction and laser intensity, we observed the transition between a photo-assisted tunnelling regime and an electron hopping process. Our findings provide a microscopic description for vibrational, optical, and electronic phenomena in plasmonic nanocavities important for efficient phonon lasing, representing the first attempt to exploit conductive molecules as quantum-mechanical oscillators.
Related papers
- Maximal quantum interaction between free electrons and photons [18.53651187347193]
Free-electron quantum optics enables electron-photon entanglement and holds the potential for generating nontrivial photon states.
We derive an upper limit to the quantum vacuum interaction strength between free electrons and single-mode photons, which illuminates the conditions for the strongest interaction.
We validate the limit by analytical and numerical calculations on canonical geometries and provide near-optimal designs indicating the feasibility of strong quantum interactions.
arXiv Detail & Related papers (2024-03-30T14:11:00Z) - Dark excitons and hot electrons modulate exciton-photon strong coupling in metal-organic optical microcavities [0.0]
Polaritons are formed as a result of strong hybridization of matter with light.
Their understanding is of paramount importance, but their disentanglement in optical spectroscopy, thus far remained unattainable.
We show that dark excitons affect the strength of exciton-photon coupling and manifest themselves as Fano-like polaritonic gain-loss spectra.
arXiv Detail & Related papers (2024-01-26T13:02:09Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Giant optomechanical spring effect in plasmonic nano- and picocavities
probed by surface-enhanced Raman scattering [8.713553888457293]
Molecular vibrations couple to visible light only weakly, have small mutual interactions, and hence are often ignored for non-linear optics.
We show the extreme confinement provided by plasmonic nano- and pico-cavities can sufficiently enhance optomechanical coupling.
arXiv Detail & Related papers (2022-04-20T17:35:26Z) - Exciton-photon complexes and dynamics in the concurrent strong-weak
coupling regime of singular site-controlled cavity quantum electrodynamics [13.810406780342314]
We investigate the exciton complexes photoluminescence, dynamics and photon statistics in the concurrent strong weak coupling regime.
We demonstrate the strong and weak coupling can coexist dynamically, as a form of intermediate regime mediated by phonon scattering.
This study suggests our device has potential for new and subtle cavity quantum electrodynamical phenomena, cavity enhanced indistinguishable single photon generation, and cluster state generation via the exciton-photon complexes for quantum networks.
arXiv Detail & Related papers (2021-07-14T07:21:57Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Vectorial polaritons in the quantum motion of a levitated nanosphere [0.0]
We show the generation of phonon-polaritons in the quantum motion of an optically-levitated nanosphere.
Our results pave the way to novel protocols for quantum information transfer between photonic and phononic components.
arXiv Detail & Related papers (2020-12-30T18:26:28Z) - Fast electrical modulation of strong near-field interactions between
erbium emitters and graphene [42.60602838972598]
We show fast, all-electrical modulation of the near-field interactions between a nanolayer of erbium emitters and graphene.
We demonstrate strong interactions with a >1,000-fold increased decay rate for 25% of the emitters.
This opens routes to quantum entanglement generation by collective plasmon emission or photon emission with controlled waveform.
arXiv Detail & Related papers (2020-07-22T08:48:01Z) - Strong interaction of slow electrons with near-field light visited from
first principles [0.0]
We show enhanced coupling can be achieved for systems involving slow electron wavepackets interacting with plasmonic nanoparticles.
Our findings pave the way towards a systematic and realistic understanding of electron-light interactions beyond adiabatic approximations.
arXiv Detail & Related papers (2020-03-31T11:18:58Z) - Understanding Radiative Transitions and Relaxation Pathways in
Plexcitons [0.0]
Molecular aggregates on plasmonic nanoparticles have emerged as attractive systems for the studies of cavity quantum electrodynamics.
We show that while the metal is responsible for destroying the coherence of the excitation, the molecular aggregate significantly participates in dissipating the energy.
We show that the dynamics beyond a few femtoseconds has to be cast in the language of hot electron distributions and excitons.
arXiv Detail & Related papers (2020-02-13T17:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.