John Ellipsoids via Lazy Updates
- URL: http://arxiv.org/abs/2501.01801v1
- Date: Fri, 03 Jan 2025 13:17:55 GMT
- Title: John Ellipsoids via Lazy Updates
- Authors: David P. Woodruff, Taisuke Yasuda,
- Abstract summary: We give a faster algorithm for computing an approximate John ellipsoid around $n$ points in $d$ dimensions.
We show that this algorithm can be substantially sped up by delaying the computation of high accuracy leverage scores.
- Score: 47.790126028106734
- License:
- Abstract: We give a faster algorithm for computing an approximate John ellipsoid around $n$ points in $d$ dimensions. The best known prior algorithms are based on repeatedly computing the leverage scores of the points and reweighting them by these scores [CCLY19]. We show that this algorithm can be substantially sped up by delaying the computation of high accuracy leverage scores by using sampling, and then later computing multiple batches of high accuracy leverage scores via fast rectangular matrix multiplication. We also give low-space streaming algorithms for John ellipsoids using similar ideas.
Related papers
- Fast John Ellipsoid Computation with Differential Privacy Optimization [34.437362489150246]
We present the first differentially private algorithm for fast John ellipsoid computation.
Our method integrates noise perturbation with sketching and leverage score sampling to achieve both efficiency and privacy.
arXiv Detail & Related papers (2024-08-12T03:47:55Z) - Learning the Positions in CountSketch [49.57951567374372]
We consider sketching algorithms which first compress data by multiplication with a random sketch matrix, and then apply the sketch to quickly solve an optimization problem.
In this work, we propose the first learning-based algorithms that also optimize the locations of the non-zero entries.
arXiv Detail & Related papers (2023-06-11T07:28:35Z) - Fast Optimal Locally Private Mean Estimation via Random Projections [58.603579803010796]
We study the problem of locally private mean estimation of high-dimensional vectors in the Euclidean ball.
We propose a new algorithmic framework, ProjUnit, for private mean estimation.
Our framework is deceptively simple: each randomizer projects its input to a random low-dimensional subspace, normalizes the result, and then runs an optimal algorithm.
arXiv Detail & Related papers (2023-06-07T14:07:35Z) - Efficient distributed representations with linear-time attention scores normalization [3.8673630752805437]
We propose a linear-time approximation of the attention score normalization constants for embedding vectors with bounded norms.
The accuracy of our estimation formula surpasses competing kernel methods by even orders of magnitude.
The proposed algorithm is highly interpretable and easily adapted to an arbitrary embedding problem.
arXiv Detail & Related papers (2023-03-30T15:48:26Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap is a computationally feasible algorithm to uncover low-dimensional structures in the Wasserstein space.
We show that LOT Wassmap attains correct embeddings and that the quality improves with increased sample size.
We also show how LOT Wassmap significantly reduces the computational cost when compared to algorithms that depend on pairwise distance computations.
arXiv Detail & Related papers (2023-02-14T22:12:16Z) - Quantum speedup of leverage score sampling and its application [0.0]
In this paper, we propose a quantum algorithm to accelerate the computation of leverage scores.
As an application, we propose a new quantum algorithm for rigid regression problems with vector solution outputs.
arXiv Detail & Related papers (2023-01-15T14:40:18Z) - Rapid Person Re-Identification via Sub-space Consistency Regularization [51.76876061721556]
Person Re-Identification (ReID) matches pedestrians across disjoint cameras.
Existing ReID methods adopting real-value feature descriptors have achieved high accuracy, but they are low in efficiency due to the slow Euclidean distance computation.
We propose a novel Sub-space Consistency Regularization (SCR) algorithm that can speed up the ReID procedure by 0.25$ times.
arXiv Detail & Related papers (2022-07-13T02:44:05Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Faster Convolution Inference Through Using Pre-Calculated Lookup Tables [0.0]
Low-cardinality activations permit an algorithm based on fetching the inference values from pre-calculated lookup tables instead of calculating them every time.
This algorithm can have extensions, some of which offer abilities beyond those of the currently used algorithms.
arXiv Detail & Related papers (2021-04-04T20:09:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.