Time Series Language Model for Descriptive Caption Generation
- URL: http://arxiv.org/abs/2501.01832v1
- Date: Fri, 03 Jan 2025 14:34:30 GMT
- Title: Time Series Language Model for Descriptive Caption Generation
- Authors: Mohamed Trabelsi, Aidan Boyd, Jin Cao, Huseyin Uzunalioglu,
- Abstract summary: We introduce TSLM, a novel time series language model designed specifically for time series captioning.
TSLM operates as an encoder-decoder model, leveraging both text prompts and time series data representations.
We show that TSLM outperforms existing state-of-the-art approaches from multiple data modalities by a significant margin.
- Score: 11.796431549951055
- License:
- Abstract: The automatic generation of representative natural language descriptions for observable patterns in time series data enhances interpretability, simplifies analysis and increases cross-domain utility of temporal data. While pre-trained foundation models have made considerable progress in natural language processing (NLP) and computer vision (CV), their application to time series analysis has been hindered by data scarcity. Although several large language model (LLM)-based methods have been proposed for time series forecasting, time series captioning is under-explored in the context of LLMs. In this paper, we introduce TSLM, a novel time series language model designed specifically for time series captioning. TSLM operates as an encoder-decoder model, leveraging both text prompts and time series data representations to capture subtle temporal patterns across multiple phases and generate precise textual descriptions of time series inputs. TSLM addresses the data scarcity problem in time series captioning by first leveraging an in-context prompting synthetic data generation, and second denoising the generated data via a novel cross-modal dense retrieval scoring applied to time series-caption pairs. Experimental findings on various time series captioning datasets demonstrate that TSLM outperforms existing state-of-the-art approaches from multiple data modalities by a significant margin.
Related papers
- TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAP is a time-series processing framework that creatively employs Large Language Models (LLMs) as contextualizers of time series data.
TimeCAP incorporates two independent LLM agents: one generates a textual summary capturing the context of the time series, while the other uses this enriched summary to make more informed predictions.
Experimental results on real-world datasets demonstrate that TimeCAP outperforms state-of-the-art methods for time series event prediction.
arXiv Detail & Related papers (2025-02-17T04:17:27Z) - Language in the Flow of Time: Time-Series-Paired Texts Weaved into a Unified Temporal Narrative [65.84249211767921]
Texts as Time Series (TaTS) considers the time-series-paired texts to be auxiliary variables of the time series.
TaTS can be plugged into any existing numerical-only time series models and enable them to handle time series data with paired texts effectively.
arXiv Detail & Related papers (2025-02-13T03:43:27Z) - VITRO: Vocabulary Inversion for Time-series Representation Optimization [21.338428379212704]
We propose VITRO to bridge the gap between the discrete, semantic nature of natural language and the continuous, numerical nature of time series data.
We show that learnable time series-specific pseudo-word embeddings represent time series data better than existing general language model vocabularies.
arXiv Detail & Related papers (2024-12-23T19:24:51Z) - Hierarchical Multimodal LLMs with Semantic Space Alignment for Enhanced Time Series Classification [4.5939667818289385]
HiTime is a hierarchical multi-modal model that seamlessly integrates temporal information into large language models.
Our findings highlight the potential of integrating temporal features into LLMs, paving the way for advanced time series analysis.
arXiv Detail & Related papers (2024-10-24T12:32:19Z) - Metadata Matters for Time Series: Informative Forecasting with Transformers [70.38241681764738]
We propose a Metadata-informed Time Series Transformer (MetaTST) for time series forecasting.
To tackle the unstructured nature of metadata, MetaTST formalizes them into natural languages by pre-designed templates.
A Transformer encoder is employed to communicate series and metadata tokens, which can extend series representations by metadata information.
arXiv Detail & Related papers (2024-10-04T11:37:55Z) - An Evaluation of Standard Statistical Models and LLMs on Time Series Forecasting [16.583730806230644]
This study highlights the key challenges that large language models encounter in the context of time series prediction.
The empirical results indicate that while large language models can perform well in zero-shot forecasting for certain datasets, their predictive accuracy diminishes notably when confronted with diverse time series data and traditional signals.
arXiv Detail & Related papers (2024-08-09T05:13:03Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimes projects time series into the embedding space of language tokens and autoregressively generates future predictions with arbitrary lengths.
We formulate time series as prompts, extending the context for prediction beyond the lookback window.
AutoTimes achieves state-of-the-art with 0.1% trainable parameters and over $5times$ training/inference speedup.
arXiv Detail & Related papers (2024-02-04T06:59:21Z) - Large Language Models Are Zero-Shot Time Series Forecasters [48.73953666153385]
By encoding time series as a string of numerical digits, we can frame time series forecasting as next-token prediction in text.
We find that large language models (LLMs) such as GPT-3 and LLaMA-2 can surprisingly zero-shot extrapolate time series at a level comparable to or exceeding the performance of purpose-built time series models trained on the downstream tasks.
arXiv Detail & Related papers (2023-10-11T19:01:28Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.