Communication Efficient Cooperative Edge AI via Event-Triggered Computation Offloading
- URL: http://arxiv.org/abs/2501.02001v1
- Date: Wed, 01 Jan 2025 15:55:59 GMT
- Title: Communication Efficient Cooperative Edge AI via Event-Triggered Computation Offloading
- Authors: You Zhou, Changsheng You, Kaibin Huang,
- Abstract summary: We propose a channel-triggered, event-triggered edge-inference framework that prioritizes efficient rare-event processing.
The proposed framework achieves superior rare-event classification accuracy, and also effectively reduces communication overhead, as opposed to existing edge-inference approaches.
- Score: 34.18100643343979
- License:
- Abstract: Rare events, despite their infrequency, often carry critical information and require immediate attentions in mission-critical applications such as autonomous driving, healthcare, and industrial automation. The data-intensive nature of these tasks and their need for prompt responses, combined with designing edge AI (or edge inference), pose significant challenges in systems and techniques. Existing edge inference approaches often suffer from communication bottlenecks due to high-dimensional data transmission and fail to provide timely responses to rare events, limiting their effectiveness for mission-critical applications in the sixth-generation (6G) mobile networks. To overcome these challenges, we propose a channel-adaptive, event-triggered edge-inference framework that prioritizes efficient rare-event processing. Central to this framework is a dual-threshold, multi-exit architecture, which enables early local inference for rare events detected locally while offloading more complex rare events to edge servers for detailed classification. To further enhance the system's performance, we developed a channel-adaptive offloading policy paired with an online algorithm to dynamically determine the optimal confidence thresholds for controlling offloading decisions. The associated optimization problem is solved by reformulating the original non-convex function into an equivalent strongly convex one. Using deep neural network classifiers and real medical datasets, our experiments demonstrate that the proposed framework not only achieves superior rare-event classification accuracy, but also effectively reduces communication overhead, as opposed to existing edge-inference approaches.
Related papers
- Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
Federated learning (FL) has been recognized as a viable solution for local-privacy-aware collaborative model training in wireless edge networks.
Most existing communication-efficient FL algorithms fail to reduce the significant inter-device variance.
We propose a novel communication-efficient FL algorithm, named FedQVR, which relies on a sophisticated variance-reduced scheme.
arXiv Detail & Related papers (2025-01-20T04:26:21Z) - Edge-device Collaborative Computing for Multi-view Classification [9.047284788663776]
We explore collaborative inference at the edge, in which edge nodes and end devices share correlated data and the inference computational burden.
We introduce selective schemes that decrease bandwidth resource consumption by effectively reducing data redundancy.
Experimental results highlight that selective collaborative schemes can achieve different trade-offs between the above performance metrics.
arXiv Detail & Related papers (2024-09-24T11:07:33Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - Semantic Communication Enabling Robust Edge Intelligence for
Time-Critical IoT Applications [87.05763097471487]
This paper aims to design robust Edge Intelligence using semantic communication for time-critical IoT applications.
We analyze the effect of image DCT coefficients on inference accuracy and propose the channel-agnostic effectiveness encoding for offloading.
arXiv Detail & Related papers (2022-11-24T20:13:17Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
Graph neural networks (GNNs) have demonstrated excellent performance in a wide range of applications.
Existing scalable GNNs leverage linear propagation to preprocess the features and accelerate the training and inference procedure.
We propose a novel adaptive propagation order approach that generates the personalized propagation order for each node based on its topological information.
arXiv Detail & Related papers (2022-11-01T14:38:18Z) - Networked Online Learning for Control of Safety-Critical
Resource-Constrained Systems based on Gaussian Processes [9.544146562919792]
We propose a novel networked online learning approach based on Gaussian process regression.
We propose an effective data transmission scheme between the local system and the cloud taking bandwidth limitations and time delay of the transmission channel into account.
arXiv Detail & Related papers (2022-02-23T13:12:12Z) - Practitioner-Centric Approach for Early Incident Detection Using
Crowdsourced Data for Emergency Services [2.5328886773979375]
Crowdsourcing platforms such as Waze provide an opportunity for early identification of incidents.
detecting incidents from crowdsourced data streams is difficult due to the challenges of noise and uncertainty associated with such data.
This paper presents a novel problem formulation and solution approach for practitioner-centered incident detection using crowdsourced data.
arXiv Detail & Related papers (2021-12-03T16:51:41Z) - Communication-Computation Efficient Device-Edge Co-Inference via AutoML [4.06604174802643]
Device-edge co-inference partitions a deep neural network between a resource-constrained mobile device and an edge server.
On-device model sparsity level and intermediate feature compression ratio have direct impacts on workload and communication overhead.
We propose a novel automated machine learning (AutoML) framework based on deep reinforcement learning (DRL)
arXiv Detail & Related papers (2021-08-30T06:36:30Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Reinforcement Learning for Mitigating Intermittent Interference in
Terahertz Communication Networks [4.999585439793266]
Uncoordinated transmissions by a large number of users can cause substantial interference in terahertz networks.
New framework based on reinforcement learning is proposed that uses an adaptive multi-thresholding strategy.
arXiv Detail & Related papers (2020-03-10T16:28:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.