Deep Clustering via Community Detection
- URL: http://arxiv.org/abs/2501.02036v1
- Date: Fri, 03 Jan 2025 12:56:12 GMT
- Title: Deep Clustering via Community Detection
- Authors: Tianyu Cheng, Qun Chen,
- Abstract summary: We propose a novel approach of deep clustering via community detection.
It initializes clustering by detecting many communities, and then gradually expands clusters by community merging.
It has the inherent benefit of high pseudo-label purity, which is critical to the performance of self-supervision.
- Score: 0.9857683394266679
- License:
- Abstract: Deep clustering is an essential task in modern artificial intelligence, aiming to partition a set of data samples into a given number of homogeneous groups (i.e., clusters). Even though many Deep Neural Network (DNN) backbones and clustering strategies have been proposed for the task, achieving increasingly improved performance, deep clustering remains very challenging due to the lack of accurately labeled samples. In this paper, we propose a novel approach of deep clustering via community detection. It initializes clustering by detecting many communities, and then gradually expands clusters by community merging. Compared with the existing clustering strategies, community detection factors in the new perspective of cluster network analysis. As a result, it has the inherent benefit of high pseudo-label purity, which is critical to the performance of self-supervision. We have validated the efficacy of the proposed approach on benchmark image datasets. Our extensive experiments have shown that it can effectively improve the SOTA performance. Our ablation study also demonstrates that the new network perspective can effectively improve community pseudo-label purity, resulting in improved clustering performance.
Related papers
- GCC: Generative Calibration Clustering [55.44944397168619]
We propose a novel Generative Clustering (GCC) method to incorporate feature learning and augmentation into clustering procedure.
First, we develop a discrimirative feature alignment mechanism to discover intrinsic relationship across real and generated samples.
Second, we design a self-supervised metric learning to generate more reliable cluster assignment.
arXiv Detail & Related papers (2024-04-14T01:51:11Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Cluster-guided Contrastive Graph Clustering Network [53.16233290797777]
We propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC)
We construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks.
To construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples.
arXiv Detail & Related papers (2023-01-03T13:42:38Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Learning Statistical Representation with Joint Deep Embedded Clustering [2.1267423178232407]
StatDEC is an unsupervised framework for joint statistical representation learning and clustering.
Our experiments show that using these representations, one can considerably improve results on imbalanced image clustering across a variety of image datasets.
arXiv Detail & Related papers (2021-09-11T09:26:52Z) - Augmented Data as an Auxiliary Plug-in Towards Categorization of
Crowdsourced Heritage Data [2.609784101826762]
We propose a strategy to mitigate the problem of inefficient clustering performance by introducing data augmentation as an auxiliary plug-in.
We train a variant of Convolutional Autoencoder (CAE) with augmented data to construct the initial feature space as a novel model for deep clustering.
arXiv Detail & Related papers (2021-07-08T14:09:39Z) - Deep adaptive fuzzy clustering for evolutionary unsupervised
representation learning [2.8028128734158164]
Cluster assignment of large and complex images is a crucial but challenging task in pattern recognition and computer vision.
We present a novel evolutionary unsupervised learning representation model with iterative optimization.
We jointly fuzzy clustering to the deep reconstruction model, in which fuzzy membership is utilized to represent a clear structure of deep cluster assignments.
arXiv Detail & Related papers (2021-03-31T13:58:10Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
We propose a fully learnable clustering framework without requiring a large number of overlapped subgraphs.
Our method significantly improves clustering accuracy and thus performance of the recognition models trained on top, yet it is an order of magnitude more efficient than existing supervised methods.
arXiv Detail & Related papers (2020-04-01T13:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.