Diffusion Model-Based Data Synthesis Aided Federated Semi-Supervised Learning
- URL: http://arxiv.org/abs/2501.02219v1
- Date: Sat, 04 Jan 2025 07:38:15 GMT
- Title: Diffusion Model-Based Data Synthesis Aided Federated Semi-Supervised Learning
- Authors: Zhongwei Wang, Tong Wu, Zhiyong Chen, Liang Qian, Yin Xu, Meixia Tao,
- Abstract summary: Federated semi-supervised learning (FSSL) is primarily challenged by two factors: the scarcity of labeled data across clients and the non-independent and identically distribution (non-IID) nature of data among clients.
We propose a novel approach, diffusion model-based data synthesis aided FSSL (DDSA-FSSL), which utilizes a diffusion model (DM) to generate synthetic data.
- Score: 33.570347678194494
- License:
- Abstract: Federated semi-supervised learning (FSSL) is primarily challenged by two factors: the scarcity of labeled data across clients and the non-independent and identically distribution (non-IID) nature of data among clients. In this paper, we propose a novel approach, diffusion model-based data synthesis aided FSSL (DDSA-FSSL), which utilizes a diffusion model (DM) to generate synthetic data, bridging the gap between heterogeneous local data distributions and the global data distribution. In DDSA-FSSL, clients address the challenge of the scarcity of labeled data by employing a federated learning-trained classifier to perform pseudo labeling for unlabeled data. The DM is then collaboratively trained using both labeled and precision-optimized pseudo-labeled data, enabling clients to generate synthetic samples for classes that are absent in their labeled datasets. This process allows clients to generate more comprehensive synthetic datasets aligned with the global distribution. Extensive experiments conducted on multiple datasets and varying non-IID distributions demonstrate the effectiveness of DDSA-FSSL, e.g., it improves accuracy from 38.46% to 52.14% on CIFAR-10 datasets with 10% labeled data.
Related papers
- Continuous Contrastive Learning for Long-Tailed Semi-Supervised Recognition [50.61991746981703]
Current state-of-the-art LTSSL approaches rely on high-quality pseudo-labels for large-scale unlabeled data.
This paper introduces a novel probabilistic framework that unifies various recent proposals in long-tail learning.
We introduce a continuous contrastive learning method, CCL, extending our framework to unlabeled data using reliable and smoothed pseudo-labels.
arXiv Detail & Related papers (2024-10-08T15:06:10Z) - Stable Diffusion-based Data Augmentation for Federated Learning with Non-IID Data [9.045647166114916]
Federated Learning (FL) is a promising paradigm for decentralized and collaborative model training.
FL struggles with a significant performance reduction and poor convergence when confronted with Non-Independent and Identically Distributed (Non-IID) data distributions.
We introduce Gen-FedSD, a novel approach that harnesses the powerful capability of state-of-the-art text-to-image foundation models.
arXiv Detail & Related papers (2024-05-13T16:57:48Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - Navigating Data Heterogeneity in Federated Learning A Semi-Supervised
Federated Object Detection [3.7398615061365206]
Federated Learning (FL) has emerged as a potent framework for training models across distributed data sources.
It faces challenges with limited high-quality labels and non-IID client data, particularly in applications like autonomous driving.
We present a pioneering SSFOD framework, designed for scenarios where labeled data reside only at the server while clients possess unlabeled data.
arXiv Detail & Related papers (2023-10-26T01:40:28Z) - Exploring One-shot Semi-supervised Federated Learning with A Pre-trained Diffusion Model [40.83058938096914]
We propose FedDISC, a Federated Diffusion-Inspired Semi-supervised Co-training method.
We first extract prototypes of the labeled server data and use these prototypes to predict pseudo-labels of the client data.
For each category, we compute the cluster centroids and domain-specific representations to signify the semantic and stylistic information of their distributions.
These representations are sent back to the server, which uses the pre-trained to generate synthetic datasets complying with the client distributions and train a global model on it.
arXiv Detail & Related papers (2023-05-06T14:22:33Z) - Distributed Traffic Synthesis and Classification in Edge Networks: A
Federated Self-supervised Learning Approach [83.2160310392168]
This paper proposes FS-GAN to support automatic traffic analysis and synthesis over a large number of heterogeneous datasets.
FS-GAN is composed of multiple distributed Generative Adversarial Networks (GANs)
FS-GAN can classify data of unknown types of service and create synthetic samples that capture the traffic distribution of the unknown types.
arXiv Detail & Related papers (2023-02-01T03:23:11Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
We show that not only the issue of data heterogeneity in current setups is not necessarily a problem but also in fact it can be beneficial for the FL participants.
Our observations are intuitive.
Our code is available at https://github.com/MMorafah/FL-SC-NIID.
arXiv Detail & Related papers (2022-09-30T17:15:19Z) - Federated Learning with GAN-based Data Synthesis for Non-IID Clients [8.304185807036783]
Federated learning (FL) has recently emerged as a popular privacy-preserving collaborative learning paradigm.
We propose a novel framework, named Synthetic Data Aided Federated Learning (SDA-FL), to resolve this non-IID challenge by sharing synthetic data.
arXiv Detail & Related papers (2022-06-11T11:43:25Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.