Watch Video, Catch Keyword: Context-aware Keyword Attention for Moment Retrieval and Highlight Detection
- URL: http://arxiv.org/abs/2501.02504v1
- Date: Sun, 05 Jan 2025 11:01:27 GMT
- Title: Watch Video, Catch Keyword: Context-aware Keyword Attention for Moment Retrieval and Highlight Detection
- Authors: Sung Jin Um, Dongjin Kim, Sangmin Lee, Jung Uk Kim,
- Abstract summary: The goal of video moment retrieval and highlight detection is to identify specific segments and highlights based on a given text query.
We present a novel Video Context-aware Keyword Attention module that overcomes this limitation.
We propose a keyword weight detection module with keyword-aware contrastive learning to enhance fine-grained alignment between visual and textual features.
- Score: 14.801564966406486
- License:
- Abstract: The goal of video moment retrieval and highlight detection is to identify specific segments and highlights based on a given text query. With the rapid growth of video content and the overlap between these tasks, recent works have addressed both simultaneously. However, they still struggle to fully capture the overall video context, making it challenging to determine which words are most relevant. In this paper, we present a novel Video Context-aware Keyword Attention module that overcomes this limitation by capturing keyword variation within the context of the entire video. To achieve this, we introduce a video context clustering module that provides concise representations of the overall video context, thereby enhancing the understanding of keyword dynamics. Furthermore, we propose a keyword weight detection module with keyword-aware contrastive learning that incorporates keyword information to enhance fine-grained alignment between visual and textual features. Extensive experiments on the QVHighlights, TVSum, and Charades-STA benchmarks demonstrate that our proposed method significantly improves performance in moment retrieval and highlight detection tasks compared to existing approaches. Our code is available at: https://github.com/VisualAIKHU/Keyword-DETR
Related papers
- ViLLa: Video Reasoning Segmentation with Large Language Model [48.75470418596875]
We propose a new video segmentation task - video reasoning segmentation.
The task is designed to output tracklets of segmentation masks given a complex input text query.
We present ViLLa: Video reasoning segmentation with a Large Language Model.
arXiv Detail & Related papers (2024-07-18T17:59:17Z) - Improving Video Corpus Moment Retrieval with Partial Relevance Enhancement [72.7576395034068]
Video Corpus Moment Retrieval (VCMR) is a new video retrieval task aimed at retrieving a relevant moment from a large corpus of untrimmed videos using a text query.
We argue that effectively capturing the partial relevance between the query and video is essential for the VCMR task.
For video retrieval, we introduce a multi-modal collaborative video retriever, generating different query representations for the two modalities.
For moment localization, we propose the focus-then-fuse moment localizer, utilizing modality-specific gates to capture essential content.
arXiv Detail & Related papers (2024-02-21T07:16:06Z) - Text-Video Retrieval via Variational Multi-Modal Hypergraph Networks [25.96897989272303]
Main obstacle for text-video retrieval is the semantic gap between the textual nature of queries and the visual richness of video content.
We propose chunk-level text-video matching, where the query chunks are extracted to describe a specific retrieval unit.
We formulate the chunk-level matching as n-ary correlations modeling between words of the query and frames of the video.
arXiv Detail & Related papers (2024-01-06T09:38:55Z) - Hierarchical Video-Moment Retrieval and Step-Captioning [68.4859260853096]
HiREST consists of 3.4K text-video pairs from an instructional video dataset.
Our hierarchical benchmark consists of video retrieval, moment retrieval, and two novel moment segmentation and step captioning tasks.
arXiv Detail & Related papers (2023-03-29T02:33:54Z) - Towards Generalisable Video Moment Retrieval: Visual-Dynamic Injection
to Image-Text Pre-Training [70.83385449872495]
The correlation between the vision and text is essential for video moment retrieval (VMR)
Existing methods rely on separate pre-training feature extractors for visual and textual understanding.
We propose a generic method, referred to as Visual-Dynamic Injection (VDI), to empower the model's understanding of video moments.
arXiv Detail & Related papers (2023-02-28T19:29:05Z) - Visual Commonsense-aware Representation Network for Video Captioning [84.67432867555044]
We propose a simple yet effective method, called Visual Commonsense-aware Representation Network (VCRN) for video captioning.
Our method reaches state-of-the-art performance, indicating the effectiveness of our method.
arXiv Detail & Related papers (2022-11-17T11:27:15Z) - Text-based Localization of Moments in a Video Corpus [38.393877654679414]
We address the task of temporal localization of moments in a corpus of videos for a given sentence query.
We propose Hierarchical Moment Alignment Network (HMAN) which learns an effective joint embedding space for moments and sentences.
In addition to learning subtle differences between intra-video moments, HMAN focuses on distinguishing inter-video global semantic concepts based on sentence queries.
arXiv Detail & Related papers (2020-08-20T00:05:45Z) - Fine-grained Iterative Attention Network for TemporalLanguage
Localization in Videos [63.94898634140878]
Temporal language localization in videos aims to ground one video segment in an untrimmed video based on a given sentence query.
We propose a Fine-grained Iterative Attention Network (FIAN) that consists of an iterative attention module for bilateral query-video in-formation extraction.
We evaluate the proposed method on three challenging public benchmarks: Ac-tivityNet Captions, TACoS, and Charades-STA.
arXiv Detail & Related papers (2020-08-06T04:09:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.