AHMSA-Net: Adaptive Hierarchical Multi-Scale Attention Network for Micro-Expression Recognition
- URL: http://arxiv.org/abs/2501.02539v1
- Date: Sun, 05 Jan 2025 13:40:12 GMT
- Title: AHMSA-Net: Adaptive Hierarchical Multi-Scale Attention Network for Micro-Expression Recognition
- Authors: Lijun Zhang, Yifan Zhang, Weicheng Tang, Xinzhi Sun, Xiaomeng Wang, Zhanshan Li,
- Abstract summary: We design an Adaptive Hierarchical Multi-Scale Attention Network (AHMSA-Net) for micro-expression recognition.
AHMSA-Net consists of two parts: an adaptive hierarchical framework and a multi-scale attention mechanism.
Experiments demonstrate that AHMSA-Net achieves recognition accuracy of up to 78.21% on composite databases.
- Score: 15.008358563986825
- License:
- Abstract: Micro-expression recognition (MER) presents a significant challenge due to the transient and subtle nature of the motion changes involved. In recent years, deep learning methods based on attention mechanisms have made some breakthroughs in MER. However, these methods still suffer from the limitations of insufficient feature capture and poor dynamic adaptation when coping with the instantaneous subtle movement changes of micro-expressions. Therefore, in this paper, we design an Adaptive Hierarchical Multi-Scale Attention Network (AHMSA-Net) for MER. Specifically, we first utilize the onset and apex frames of the micro-expression sequence to extract three-dimensional (3D) optical flow maps, including horizontal optical flow, vertical optical flow, and optical flow strain. Subsequently, the optical flow feature maps are inputted into AHMSA-Net, which consists of two parts: an adaptive hierarchical framework and a multi-scale attention mechanism. Based on the adaptive downsampling hierarchical attention framework, AHMSA-Net captures the subtle changes of micro-expressions from different granularities (fine and coarse) by dynamically adjusting the size of the optical flow feature map at each layer. Based on the multi-scale attention mechanism, AHMSA-Net learns micro-expression action information by fusing features from different scales (channel and spatial). These two modules work together to comprehensively improve the accuracy of MER. Additionally, rigorous experiments demonstrate that the proposed method achieves competitive results on major micro-expression databases, with AHMSA-Net achieving recognition accuracy of up to 78.21% on composite databases (SMIC, SAMM, CASMEII) and 77.08% on the CASME^{}3 database.
Related papers
- Divide-and-Conquer: Confluent Triple-Flow Network for RGB-T Salient Object Detection [70.84835546732738]
RGB-Thermal Salient Object Detection aims to pinpoint prominent objects within aligned pairs of visible and thermal infrared images.
Traditional encoder-decoder architectures may not have adequately considered the robustness against noise originating from defective modalities.
We propose the ConTriNet, a robust Confluent Triple-Flow Network employing a Divide-and-Conquer strategy.
arXiv Detail & Related papers (2024-12-02T14:44:39Z) - Wavelet-based Bi-dimensional Aggregation Network for SAR Image Change Detection [53.842568573251214]
Experimental results on three SAR datasets demonstrate that our WBANet significantly outperforms contemporary state-of-the-art methods.
Our WBANet achieves 98.33%, 96.65%, and 96.62% of percentage of correct classification (PCC) on the respective datasets.
arXiv Detail & Related papers (2024-07-18T04:36:10Z) - Three-Stream Temporal-Shift Attention Network Based on Self-Knowledge Distillation for Micro-Expression Recognition [21.675660978188617]
Micro-expression recognition is crucial in many fields, including criminal analysis and psychotherapy.
A three-stream temporal-shift attention network based on self-knowledge distillation called SKD-TSTSAN is proposed in this paper.
arXiv Detail & Related papers (2024-06-25T13:22:22Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
This paper proposes a novel SSC framework - Adrial Modality Modulation Network (AMMNet)
AMMNet introduces two core modules: a cross-modal modulation enabling the interdependence of gradient flows between modalities, and a customized adversarial training scheme leveraging dynamic gradient competition.
Extensive experimental results demonstrate that AMMNet outperforms state-of-the-art SSC methods by a large margin.
arXiv Detail & Related papers (2024-03-12T11:48:49Z) - Mutual Information-driven Triple Interaction Network for Efficient Image
Dehazing [54.168567276280505]
We propose a novel Mutual Information-driven Triple interaction Network (MITNet) for image dehazing.
The first stage, named amplitude-guided haze removal, aims to recover the amplitude spectrum of the hazy images for haze removal.
The second stage, named phase-guided structure refined, devotes to learning the transformation and refinement of the phase spectrum.
arXiv Detail & Related papers (2023-08-14T08:23:58Z) - Multi-scale multi-modal micro-expression recognition algorithm based on
transformer [17.980579727286518]
A micro-expression is a spontaneous unconscious facial muscle movement that can reveal the true emotions people attempt to hide.
We propose a multi-modal multi-scale algorithm based on transformer network to learn local multi-grained features of micro-expressions.
The results show the accuracy of the proposed algorithm in single measurement SMIC database is up to 78.73% and the F1 value on CASMEII of the combined database is up to 0.9071.
arXiv Detail & Related papers (2023-01-08T03:45:23Z) - EMC2A-Net: An Efficient Multibranch Cross-channel Attention Network for
SAR Target Classification [10.479559839534033]
This paper proposed two residual blocks, namely EMC2A blocks with multiscale receptive fields(RFs), based on a multibranch structure and then designed an efficient isotopic architecture deep CNN (DCNN), EMC2A-Net.
EMC2A blocks utilize parallel dilated convolution with different dilation rates, which can effectively capture multiscale context features without significantly increasing the computational burden.
This paper proposed a multiscale feature cross-channel attention module, namely the EMC2A module, adopting a local multiscale feature interaction strategy without dimensionality reduction.
arXiv Detail & Related papers (2022-08-03T04:31:52Z) - Hierarchical Feature Alignment Network for Unsupervised Video Object
Segmentation [99.70336991366403]
We propose a concise, practical, and efficient architecture for appearance and motion feature alignment.
The proposed HFAN reaches a new state-of-the-art performance on DAVIS-16, achieving 88.7 $mathcalJ&mathcalF$ Mean, i.e., a relative improvement of 3.5% over the best published result.
arXiv Detail & Related papers (2022-07-18T10:10:14Z) - Efficient Two-Stream Network for Violence Detection Using Separable
Convolutional LSTM [0.0]
We propose an efficient two-stream deep learning architecture leveraging Separable Convolutional LSTM (SepConvLSTM) and pre-trained MobileNet.
SepConvLSTM is constructed by replacing convolution operation at each gate of ConvLSTM with a depthwise separable convolution.
Our model outperforms the accuracy on the larger and more challenging RWF-2000 dataset by more than a 2% margin.
arXiv Detail & Related papers (2021-02-21T12:01:48Z) - A Multi-stream Convolutional Neural Network for Micro-expression
Recognition Using Optical Flow and EVM [7.511596258731931]
Micro-expression (ME) recognition plays a crucial role in a wide range of applications, particularly in public security and psychotherapy.
Recently, traditional methods rely excessively on machine learning design and the recognition rate is not high enough for its practical application.
We design a multi-stream convolutional neural network (MSCNN) for ME recognition in this paper.
arXiv Detail & Related papers (2020-11-07T11:28:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.