GS-DiT: Advancing Video Generation with Pseudo 4D Gaussian Fields through Efficient Dense 3D Point Tracking
- URL: http://arxiv.org/abs/2501.02690v1
- Date: Sun, 05 Jan 2025 23:55:33 GMT
- Title: GS-DiT: Advancing Video Generation with Pseudo 4D Gaussian Fields through Efficient Dense 3D Point Tracking
- Authors: Weikang Bian, Zhaoyang Huang, Xiaoyu Shi, Yijin Li, Fu-Yun Wang, Hongsheng Li,
- Abstract summary: Training a video Diffusion Transformer (DiT) directly to control 4D content requires expensive multi-view videos.
Inspired by Monocular Dynamic novel View Synthesis (MDVS), we bring pseudo 4D Gaussian fields to video generation.
We finetune a pretrained DiT to generate videos following the guidance of the rendered video, dubbed as GS-DiT.
- Score: 38.104532522698285
- License:
- Abstract: 4D video control is essential in video generation as it enables the use of sophisticated lens techniques, such as multi-camera shooting and dolly zoom, which are currently unsupported by existing methods. Training a video Diffusion Transformer (DiT) directly to control 4D content requires expensive multi-view videos. Inspired by Monocular Dynamic novel View Synthesis (MDVS) that optimizes a 4D representation and renders videos according to different 4D elements, such as camera pose and object motion editing, we bring pseudo 4D Gaussian fields to video generation. Specifically, we propose a novel framework that constructs a pseudo 4D Gaussian field with dense 3D point tracking and renders the Gaussian field for all video frames. Then we finetune a pretrained DiT to generate videos following the guidance of the rendered video, dubbed as GS-DiT. To boost the training of the GS-DiT, we also propose an efficient Dense 3D Point Tracking (D3D-PT) method for the pseudo 4D Gaussian field construction. Our D3D-PT outperforms SpatialTracker, the state-of-the-art sparse 3D point tracking method, in accuracy and accelerates the inference speed by two orders of magnitude. During the inference stage, GS-DiT can generate videos with the same dynamic content while adhering to different camera parameters, addressing a significant limitation of current video generation models. GS-DiT demonstrates strong generalization capabilities and extends the 4D controllability of Gaussian splatting to video generation beyond just camera poses. It supports advanced cinematic effects through the manipulation of the Gaussian field and camera intrinsics, making it a powerful tool for creative video production. Demos are available at https://wkbian.github.io/Projects/GS-DiT/.
Related papers
- Deblur4DGS: 4D Gaussian Splatting from Blurry Monocular Video [64.38566659338751]
We propose the first 4D Gaussian Splatting framework to reconstruct a high-quality 4D model from blurry monocular video, named Deblur4DGS.
We introduce exposure regularization to avoid trivial solutions, as well as multi-frame and multi-resolution consistency ones to alleviate artifacts. Beyond novel-view, Deblur4DGS can be applied to improve blurry video from multiple perspectives, including deblurring, frame synthesis, and video stabilization.
arXiv Detail & Related papers (2024-12-09T12:02:11Z) - GenXD: Generating Any 3D and 4D Scenes [137.5455092319533]
We propose to jointly investigate general 3D and 4D generation by leveraging camera and object movements commonly observed in daily life.
By leveraging all the 3D and 4D data, we develop our framework, GenXD, which allows us to produce any 3D or 4D scene.
arXiv Detail & Related papers (2024-11-04T17:45:44Z) - Enhancing Temporal Consistency in Video Editing by Reconstructing Videos with 3D Gaussian Splatting [94.84688557937123]
Video-3DGS is a 3D Gaussian Splatting (3DGS)-based video refiner designed to enhance temporal consistency in zero-shot video editors.
Our approach utilizes a two-stage 3D Gaussian optimizing process tailored for editing dynamic monocular videos.
It enhances video editing by ensuring temporal consistency across 58 dynamic monocular videos.
arXiv Detail & Related papers (2024-06-04T17:57:37Z) - 4DGen: Grounded 4D Content Generation with Spatial-temporal Consistency [118.15258850780417]
We present textbf4DGen, a novel framework for grounded 4D content creation.
Our pipeline facilitates controllable 4D generation, enabling users to specify the motion via monocular video or adopt image-to-video generations.
Compared to existing video-to-4D baselines, our approach yields superior results in faithfully reconstructing input signals.
arXiv Detail & Related papers (2023-12-28T18:53:39Z) - DreamGaussian4D: Generative 4D Gaussian Splatting [56.49043443452339]
We introduce DreamGaussian4D (DG4D), an efficient 4D generation framework that builds on Gaussian Splatting (GS)
Our key insight is that combining explicit modeling of spatial transformations with static GS makes an efficient and powerful representation for 4D generation.
Video generation methods have the potential to offer valuable spatial-temporal priors, enhancing the high-quality 4D generation.
arXiv Detail & Related papers (2023-12-28T17:16:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.