Persistence of Backdoor-based Watermarks for Neural Networks: A Comprehensive Evaluation
- URL: http://arxiv.org/abs/2501.02704v1
- Date: Mon, 06 Jan 2025 01:15:35 GMT
- Title: Persistence of Backdoor-based Watermarks for Neural Networks: A Comprehensive Evaluation
- Authors: Anh Tu Ngo, Chuan Song Heng, Nandish Chattopadhyay, Anupam Chattopadhyay,
- Abstract summary: backdoor-based watermarks have been actively developed in recent years to preserve proprietary rights.
In this paper, we evaluate the persistence of recent backdoor-based watermarks within neural networks in the scenario of fine-tuning.
We propose/develop a novel data-driven idea to restore watermark after fine-tuning without exposing the trigger set.
- Score: 3.1858340237924776
- License:
- Abstract: Deep Neural Networks (DNNs) have gained considerable traction in recent years due to the unparalleled results they gathered. However, the cost behind training such sophisticated models is resource intensive, resulting in many to consider DNNs to be intellectual property (IP) to model owners. In this era of cloud computing, high-performance DNNs are often deployed all over the internet so that people can access them publicly. As such, DNN watermarking schemes, especially backdoor-based watermarks, have been actively developed in recent years to preserve proprietary rights. Nonetheless, there lies much uncertainty on the robustness of existing backdoor watermark schemes, towards both adversarial attacks and unintended means such as fine-tuning neural network models. One reason for this is that no complete guarantee of robustness can be assured in the context of backdoor-based watermark. In this paper, we extensively evaluate the persistence of recent backdoor-based watermarks within neural networks in the scenario of fine-tuning, we propose/develop a novel data-driven idea to restore watermark after fine-tuning without exposing the trigger set. Our empirical results show that by solely introducing training data after fine-tuning, the watermark can be restored if model parameters do not shift dramatically during fine-tuning. Depending on the types of trigger samples used, trigger accuracy can be reinstated to up to 100%. Our study further explores how the restoration process works using loss landscape visualization, as well as the idea of introducing training data in fine-tuning stage to alleviate watermark vanishing.
Related papers
- Towards Robust Model Watermark via Reducing Parametric Vulnerability [57.66709830576457]
backdoor-based ownership verification becomes popular recently, in which the model owner can watermark the model.
We propose a mini-max formulation to find these watermark-removed models and recover their watermark behavior.
Our method improves the robustness of the model watermarking against parametric changes and numerous watermark-removal attacks.
arXiv Detail & Related papers (2023-09-09T12:46:08Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
Training a high-performance deep neural network requires large amounts of data and computational resources.
We propose a safe and robust backdoor-based watermark injection technique.
We induce random perturbation of model parameters during watermark injection to defend against common watermark removal attacks.
arXiv Detail & Related papers (2023-09-04T19:58:35Z) - Rethinking White-Box Watermarks on Deep Learning Models under Neural
Structural Obfuscation [24.07604618918671]
Copyright protection for deep neural networks (DNNs) is an urgent need for AI corporations.
White-box watermarking is believed to be accurate, credible and secure against most known watermark removal attacks.
We present the first systematic study on how the mainstream white-box watermarks are commonly vulnerable to neural structural obfuscation with textitdummy neurons.
arXiv Detail & Related papers (2023-03-17T02:21:41Z) - On Function-Coupled Watermarks for Deep Neural Networks [15.478746926391146]
We propose a novel DNN watermarking solution that can effectively defend against watermark removal attacks.
Our key insight is to enhance the coupling of the watermark and model functionalities.
Results show a 100% watermark authentication success rate under aggressive watermark removal attacks.
arXiv Detail & Related papers (2023-02-08T05:55:16Z) - Untargeted Backdoor Watermark: Towards Harmless and Stealthy Dataset
Copyright Protection [69.59980270078067]
We explore the untargeted backdoor watermarking scheme, where the abnormal model behaviors are not deterministic.
We also discuss how to use the proposed untargeted backdoor watermark for dataset ownership verification.
arXiv Detail & Related papers (2022-09-27T12:56:56Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
The intellectual property (IP) of Deep neural networks (DNNs) can be easily stolen'' by surrogate model attack.
We propose a new watermarking methodology, namely structure consistency'', based on which a new deep structure-aligned model watermarking algorithm is designed.
arXiv Detail & Related papers (2021-08-05T04:27:15Z) - Detect and remove watermark in deep neural networks via generative
adversarial networks [10.058070050660104]
We propose a scheme to detect and remove watermark in deep neural networks via generative adversarial networks (GAN)
In the first phase, we use the GAN and few clean images to detect and reverse the watermark in the DNN model.
In the second phase, we fine-tune the watermarked DNN based on the reversed backdoor images.
arXiv Detail & Related papers (2021-06-15T12:45:22Z) - Reversible Watermarking in Deep Convolutional Neural Networks for
Integrity Authentication [78.165255859254]
We propose a reversible watermarking algorithm for integrity authentication.
The influence of embedding reversible watermarking on the classification performance is less than 0.5%.
At the same time, the integrity of the model can be verified by applying the reversible watermarking.
arXiv Detail & Related papers (2021-04-09T09:32:21Z) - Don't Forget to Sign the Gradients! [60.98885980669777]
GradSigns is a novel watermarking framework for deep neural networks (DNNs)
We present GradSigns, a novel watermarking framework for deep neural networks (DNNs)
arXiv Detail & Related papers (2021-03-05T14:24:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.